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Preface

Visual notations and languages continue to play a pivotal rôle in the design
of complex software systems. In many cases visual notations are used to de-
scribe usage or interaction scenarios of software systems or their components.
While representing scenarios using a visual notation is not the only possibility,
a vast majority of scenario description languages is visual. Scenarios are used
in telecommunications as Message Sequence Charts, in object-oriented system
design as Sequence Diagrams, in reverse engineering as execution traces, and
in requirements engineering as, for example, Use Case Maps or Life Sequence
Charts. These techniques are used to capture requirements, to capture use cases
in system documentation, to specify test cases, or to visualize runs of existing
systems. They are often employed to represent concurrent systems that inter-
act via message passing or method invocation. In telecommunications, for more
than 15 years the International Telecommunication Union has standardized the
Message Sequence Charts (MSCs) notation in its recommendation Z.120. More
recently, with the emergence of UML as a predominant software design method-
ology, there has been special interest in the development of the sequence dia-
gram notation. As a result, the most recent version, 2.0, of UML encompasses
the Message Sequence Chart notation, including its hierarchical modeling fea-
tures. Other scenario-flavored diagrams in UML 2.0 include activity diagrams
and timing diagrams.

To a large extent the attractiveness of visual scenario notations stems from
the ease with which these diagrams can be recognized and understood. On the
other hand, the ease of use of these diagrams brings with it the danger that
system specifications and designs understate the inherent system complexity
and lead to incomplete system models. A research focus is therefore directed at
making scenario notations amenable to formal treatment – this includes models
for their formal representations, transformations between different notations and
abstraction levels, and tools that support editing, analysis and synthesis for
scenario notations.

The seminar on which this proceedings volume reports was entitled Scenarios:
Models, Transformations and Tools and was held as Seminar Number 03371
during September 7–12, 2003, at Schloss Dagstuhl, Germany. It was organized
as a continuation of a series of workshops that have been co-located with larger
conferences such as the International Conference on Software Engineering (ICSE)
and the Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOSPLA) since 2000. This volume is a post-event proceedings
volume and contains selected papers based on presentations given during the
seminar. All included papers were thoroughly peer-reviewed in two rounds of
reviewing.



VI Preface

The paper by Haugen, Husa, Runde and Stølen opens the first section of
papers that deal with the semantics and analysis of scenario notations. The
authors of this paper argue for the need to use a three-event semantics which
distinguishes the sending event, the receiving event and the consumption event
in timed sequence diagrams. An interactive scenario design process by which the
system synthesizes a design model by learning from sets of positive and nega-
tive scenarios, represented as sequence diagrams, is described in the paper by
Harel, Kugler and Weiss. An analysis tool stands at the end of their tool chain.
When analyzing Scenario specifications it is important to recognize the limits
of decidability. The paper by Muscholl and Peled reviews important decidabil-
ity results regarding Sequence Diagrams and Message Sequence Charts, another
popular visual scenario notation. It is frequently observed that the application
of modeling formalisms in specific application domains requires dedicated se-
mantics. Cremers and Mauw propose in their paper an operational semantics for
Messages Sequence Charts applied in the domain of security protocols.

One objective of the Dagstuhl seminar was to entice practical work that as-
sesses the suitability of different scenario design approaches to a common case
study. Two half-days during the seminar were devoted to modeling the case study
known as the Autonomous Shuttle System using different design approaches and
tools. The paper by Giese and Klein describe this case study. Some of the sub-
sequent papers in this volume refer to it.

We mentioned above that many but not all scenario formalisms are visual.
In his paper, Dromey introduces a textual scenario description language called
Design Behavior Trees and exemplifies this design notation by application to the
Early Warning System case study proposed by Harel and Politi.

The paper by Diethelm, Geiger and Zündorf offers a thorough treatment of
the Autonomous Shuttle System case study using the Story Driven Modeling
design approach. The CASE tool Fujaba, which underlies this study, enables
editing, analysis and synthesis based on a collection of scenarios. The Use Case
Maps notation has recently evolved as a new visual requirements notation that
focusses on expressing the causalities of events happening along use cases. In their
paper, Petriu, Amyot, Woodside and Jiang illustrate the use of the Use Case
Maps notation by applying it to capturing requirements for the Autonomous
Shuttle System case study.

It has long been recognized that Message Sequence Charts and related sce-
nario notations can prove helpful in software testing. The paper by Beyer and
Dulz suggests the use of collections of scenarios in the synthesis of a stochastic
usage model, called Markov Chain Usage Models. These models are later used
as the basis for testing stochastic properties of real-time systems.

Both the formal analysis of variants of Message Sequence Chart models and
the synthesis of correct executable code from these models are at the heart
of the paper by Bontemps, Heymans and Schobbens. Since both problems are
either computationally expensive or intractable, the authors propose sound and
complete “lightweight” approximations of the original problems. The synthesis
problem is also the subject of the paper by Giese, Klein and Burmester. The



Preface VII

authors suggest the derivation of behavior patterns from scenario specifications.
The patterns will later be used for compositional system verification.

The modeling of mobile systems is addressed in the paper by Kosiuczenko.
The author suggests a graphical scenario notation to represent object mobility
as an extension of UML Sequence Diagrams and suggests a semi-formal inter-
pretation for this notation.

Message Sequence Charts are frequently used at the early stages of the soft-
ware design process, and it is desirable to derive executable design models from
them. The MSC2SDL tool that Khendek and Zhang describe synthesizes SDL
models from collections of MSC specifications. The authors illustrate their ap-
proach by using the Autonomous Shuttle System case study as a reference.

Object-oriented systems tend to be described by the services that the object
instances can provide, and often assume that an object may provide different
services as it plays different rôles. The paper by Krüger and Mathews illustrates
the use of Scenario Diagrams in describing the different services that object
instances may provide. They also show how a complete system view can be
derived from this model. The authors exemplify the use of their notation by
applying it to the Center TRACON Automation System (CTAS) case study,
another benchmark case study for scenario-based system design.

The collection of papers included in this volume covers a major portion of the
discussions that took place during the seminar. More information, including the
program, transparencies of the presentations, and a summary of the outcome of
the seminar, is available online under the URL http://www.dagstuhl.de/03371/

Acknowledgements. We thank Francis Bordeleau for co-organizing this seminar
with us and for helping us in the initial phases of the editing of this volume.
We are truly grateful to Schloss Dagstuhl and its staff for providing us with the
very pleasant atmosphere that made a very productive seminar come about. The
permission to use the Springer LNCS online reviewing system helped us a lot
in the compilation of this volume, and we wish to thank Tiziana Margaria and
Martin Karusseit for their support.

March 2005 Tarja Systä (Tampere)
Stefan Leue (Konstanz)
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Why Timed Sequence Diagrams Require
Three-Event Semantics

Øystein Haugen1, Knut Eilif Husa1,2, Ragnhild Kobro Runde1,
and Ketil Stølen1,3

1 Department of Informatics, University of Oslo
2 Ericsson

3 SINTEF ICT, Norway

Abstract. STAIRS is an approach to the compositional development of
sequence diagrams supporting the specification of mandatory as well as
potential behavior. In order to express the necessary distinction between
black-box and glass-box refinement, an extension of the semantic frame-
work with three event messages is introduced. A concrete syntax is also
proposed. The proposed extension is especially useful when describing
time constraints. The resulting approach, referred to as Timed STAIRS,
is formally underpinned by denotational trace semantics. A trace is a
sequence of three kinds of events: events for transmission, reception and
consumption. We argue that such traces give the necessary expressive-
ness to capture the standard UML interpretation of sequence diagrams
as well as the black-box interpretation found in classical formal methods.

1 Introduction to STAIRS

Sequence diagrams have been used informally for several decades. The first stan-
dardization of sequence diagrams came in 1992 [ITU93] – often referred to as
MSC-92. Later we have seen several dialects and variations. The sequence di-
agrams of UML 1.4 [OMG00] were comparable to those of MSC-92, while the
recent UML 2.0 [OMG04] has upgraded sequence diagrams to conform well to
MSC-2000 [ITU99].

Sequence diagrams show how messages are sent between objects or other
instances to perform a task. They are used in a number of different situations.
They are for example used by an individual designer to get a better grip of a
communication scenario or by a group to achieve a common understanding of
the situation. Sequence diagrams are also used during the more detailed design
phase where the precise inter-process communication must be set up according to
formal protocols. When testing is performed, the behavior of the system can be
described as sequence diagrams and compared with those of the earlier phases.

Sequence diagrams seem to have the ability to be understood and produced
by professionals of computer systems design as well as potential end-users and
stakeholders of the (future) systems. Even though sequence diagrams are intu-
itive – a property which is always exploited, it is not always obvious how one goes

1–25S. Leue and T.J. Systä (Eds.): Scenarios, LNCS 3466, pp. , 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Ø. Haugen et al.

about making the sequence diagrams when a certain situation is analyzed. It is
also the case that intuition is not always the best guide for a precise interpreta-
tion of a complicated scenario. Therefore we have brought forth an approach for
reaching a sensible and fruitful set of sequence diagrams, supported by formal
reasoning. We called this approach STAIRS – Steps To Analyze Interactions
with Refinement Semantics [HS03].

STAIRS distinguishes between positive and negative traces and accepts that
some traces may be inconclusive meaning that they have not yet or should not
be characterized as positive or negative. STAIRS views the process of developing
the interactions as a process of learning through describing. From a fuzzy, rough
sketch, the aim is to reach a precise and detailed description applicable for formal
handling. To come from the rough and fuzzy to the precise and detailed, STAIRS
distinguishes between three sub-activities: (1) supplementing, (2) narrowing and
(3) detailing.

Supplementing categorizes inconclusive behavior as either positive or nega-
tive. The initial requirements concentrate on the most obvious normal situations
and the most obvious exceptional ones. Supplementing supports this by allowing
less obvious situations to be treated later. Narrowing reduces the allowed behav-
ior to match the problem better. Detailing involves introducing a more detailed
description without significantly altering the externally observable behavior.

STAIRS distinguishes between potential alternatives and mandatory or oblig-
atory alternatives. A special composition operator named xalt facilitates the
specification of mandatory alternatives.

Figure 1 shows our STAIRS example – an interaction overview diagram de-
scription of the making of a dinner at an ethnic restaurant.
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Fig. 1. Interaction overview diagram of a dinner
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The dinner starts with a salad and continues with a main course that consists
of an entree and a side order, which are made in parallel. For the side order there
is a simple choice between three alternatives and the restaurant is not obliged
to have any particular of them available. Supplementing side orders could be to
offer soya beans in addition, while narrowing would mean that the restaurant
could choose only to serve rice and never potatoes nor fries. It would still be
consistent with the specification and a valid refinement. On the other hand,
the entree has more absolute requirements. The restaurant is obliged to offer
vegetarian as well as meat, but it does not have to serve both beef and pork.
This means that Indian as well as Jewish restaurants are refinements (narrowing)
of our dinner concept, while a pure vegetarian restaurant is not valid according
to our specification.

The remainder of the paper is divided into six sections: Section 2 motivates
the need for a three event semantics for sequence diagrams. Section 3 intro-
duces the formal machinery; in particular, it defines the syntax and semantics of
sequence diagrams. Section 4 defines two special interpretations of sequence dia-
grams, referred to as the standard and the black-box interpretation, respectively.
Section 5 demonstrates the full power of Timed STAIRS as specification formal-
ism. Section 6 introduces glass-box and black-box refinement and demonstrates
the use of these notions. Section 7 provides a brief conclusion and compares
Timed STAIRS to other approaches known from the literature.

2 Motivating Timed STAIRS

STAIRS works well for its purpose. However, there are certain things that cannot
be expressed within the framework as presented in [HS03]. For instance time
constraints and the difference between glass-box and black-box view of a system.
This section motivates the need for this extra expressiveness.

Let us now look closer at the details of making the Beef in Figure 1.1 From
Figure 2 it is intuitive to assume that the working of the Cook making Beef can
be explained by the following scheme: The Cook receives an order for main dish
(of type Beef) and then turns on the heat and waits until the heat is adequate.
Then he fetches the sirloin meat from the refrigerator before putting it on the
grill. Then he fetches the sirloin from the stove (hopefully when it is adequately
grilled). He then sends the steak to the customer.

We reached this explanation of the procedures of the cook from looking locally
at the cook’s lifeline in the Beef diagram. The input event led to one or more
outputs, before he again would wait for an input. We found it natural to assume
that the input event meant that the cook handled this event, consumed it and

1 This sequence diagram is not a complete specification of Beef. The supplementing
has not yet been finished. From a methodological point of view, the diagram should
be “closed” with an assert when the supplementing has been finished. This to state
that what is still left as inconclusive behavior should from now on be understood as
negative. Otherwise, we do not get the semantics intended by Figure 1.
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Fig. 2. Sequence diagram of Beef

acted upon it. This intuition gives rise to what we here will call the standard
interpretation of sequence diagrams where an input event is seen as consumption
of the event, and where the directly following output events of the trace are
causally linked to the consumption. Thus, we can by considering each separate
lifeline locally determine the transitions of a state machine describing the lifeline.

Our description of how the beef is made comes from a quiet day, or early
in the evening when there were not so many customers and the kitchen had no
problems to take care of each order immediately. Furthermore our description
was probably made for one of those restaurants where the customers can look
into the kitchen through glass. It was a glass-box description. We want, however,
to be able to describe the situation later in the evening when the restaurant is
crammed with customers and in a restaurant where there is only a black door
to the kitchen. We would like to assume that even though the restaurant is
full, the kitchen will handle our order immediately, but alas this is of course
not the case. We can only observe the kitchen as a black-box. We observe the
waiters coming through the door as messengers – orders one way and dishes the
other. From these observations we could make estimates of the efficiency of the
kitchen. Notice that the efficiency of the kitchen cannot be derived from when
the customers placed the orders because the waiters may stop at several tables
before they enter the kitchen. Comparing black-box observations of the kitchen
with our glass-box one, we realize that in the glass-box description no event was
attached to passing through the door. The order was sent by the customer and
consumed by the chef. The passing through the door represents that the kitchen
is receiving the message but not necessarily doing something with it. As long
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as you are not interested in timing matters, the difference is seldom practically
significant, but when time matters, the difference between when a message is
received and when it is consumed is crucial. How is the kitchen organized to
handle the orders in a swift and fair manner?

Motivated by this we will use three events to represent the communication
of a message: the sending event, the receiving event and the consumption event,
and each of these events may have a timestamp associated. We will introduce
concrete syntax for sequence diagrams to capture this and the distinction is also
reflected in the semantics. This will give us sufficient expressiveness to describe
a black-box interpretation as well as the standard glass-box interpretation.

3 Formal Foundation

In the following we define the notion of sequence diagram. In particular, we
formalize the meaning of sequence diagrams in denotational trace semantics.

3.1 Syntax of Sequence Diagrams

A message is a triple (s, tr , re) of a signal s, a transmitter tr , and a receiver re.
M denotes the set of all messages. The transmitters and receivers are lifelines.
L denotes the set of all lifelines.

We distinguish between three kinds of events; a transmission event tagged
by an exclamation mark “!”, a reception event tagged by a tilde “∼”, or a
consumption event tagged by a question mark “?”. K denotes {!,∼, ?}.

Every event occurring in a sequence diagram is decorated with a unique
timestamp. T denotes the set of timestamp tags. We use logical formulas with
timestamp tags as free variables to impose constraints on the timing of events.
By F(v) we denote the set of logical formulas whose free variables are contained
in the set of timestamp tags v .

E denotes the set of all events. Formally, an event is a triple of kind, message
and timestamp tag

E = K ×M × T

We define the functions

k . ∈ E → K , m. ∈ E → M , t . ∈ E → T , tr . , re. ∈ E → L

to yield the kind, message, timestamp tag, transmitter and receiver of an event,
respectively.

N denotes the set of natural numbers, while N0 denotes the set of natural
numbers including 0.

The set of syntactically correct sequence diagrams D is defined inductively.
D is the least set such that:

– E ⊂ D
– d ∈ D ⇒ neg d ∈ D ∧ assert d ∈ D
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– d1, d2 ∈ D ⇒ d1 alt d2 ∈ D ∧ d1 xalt d2 ∈ D ∧ d1 seq d2 ∈ D ∧ d1 par d2 ∈ D
– d ∈ D ∧ C ∈ F(tt(d))⇒ d tc C ∈ D

where tt(d) yields the set of timestamp tags occurring in d . The base case implies
that any event is a sequence diagram. Any other sequence diagram is constructed
from the basic ones through the application of operators for negation, assertion,
potential choice, mandatory choice, weak sequencing, parallel execution and time
constraint. The full set of operators as defined by UML 2.0 [OMG04] is somewhat
more comprehensive, and it is beyond the scope of this paper to treat them all.
We focus on the operators that we find most essential.

We define the function

ll ∈ D → P(L)

to yield the set of lifelines of the sequence diagram constituting its argument.

3.2 Representing Executions by Traces

We will define the semantics of sequence diagrams by using sequences of events.
By A ∞ and A ω we denote the set of all infinite sequences and the set of all

finite and infinite sequences over the set A, respectively. We define the functions

# ∈ A ω → N0 ∪ {∞}, [ ] ∈ A ω × N→ A

to yield the length and the nth element of a sequence. Hence, #a yields the
number of elements in a, and a[n] yields a’s nth element if n ≤ #a.

We also need functions for concatenation, truncation and filtering:

� ∈ A ω ×A ω → A ω, | ∈ A ω × N0 → A ω,
S© ∈ P(A)×A ω → A ω, T© ∈ P(A× B)× (A ω × B ω)→ A ω × B ω

Concatenating two sequences implies gluing them together. Hence, a1 � a2

denotes a sequence of length #a1 + #a2 that equals a1 if a1 is infinite, and is
prefixed by a1 and suffixed by a2, otherwise. For any 0 ≤ i ≤ #a, we define a|i
to denote the prefix of a of length i .

The filtering function S© is used to filter away elements. By B S© a we denote
the sequence obtained from the sequence a by removing all elements in a that
are not in the set of elements B . For example, we have that

{1, 3} S© 〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉

The filtering function T© may be understood as a generalization of S© . The
function T© filters pairs of sequences with respect to pairs of elements in the
same way as S© filters sequences with respect to elements. For any set of pairs
of elements P and pair of sequences t , by P T© t we denote the pair of sequences
obtained from t by
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– truncating the longest sequence in t at the length of the shortest sequence
in t if the two sequences are of unequal length;

– for each j ∈ [1 . . . k ], where k is the length of the shortest sequence in t ,
selecting or deleting the two elements at index j in the two sequences, de-
pending on whether the pair of these elements is in the set P .

For example, we have that

{(1, f ), (1, g)} T© (〈1, 1, 2, 1, 2〉, 〈f , f , f , g , g〉) = (〈1, 1, 1〉, 〈f , f , g〉)

For a formal definition of T© , see [BS01].
We are mainly interested in communication scenarios. The actual content

of messages is not significant for the purpose of this paper. Hence, we do not
give any semantic interpretation of messages as such. The same holds for events
except that the timestamp tag is assigned a timestamp in the form of a real
number. R denotes the set of all timestamps. Hence:2

[[ E ]] def= {(k , m, t → r) | (k , m, t) ∈ E ∧ r ∈ R} (1)

We define the function

r . ∈ [[ E ]]→ R

to yield the timestamp of an event. Moreover, for any lifeline l and kind s, let
E (l , s) be the set of all events e ∈ [[ E ]] such that tr .e = l and k .e = s.

A trace h is an element of [[ E ]] ω that satisfies a number of well-formedness
conditions. We use traces to represent executions. By an execution we mean the
trace of events resulting from an execution of the specified system. We require
the events in h to be ordered by time: the timestamp of the ith event is less
than or equal to the timestamp of the j th event if i < j . Formally:

∀ i , j ∈ [1..#h] : i < j ⇒ r .h[i ] ≤ r .h[j ]

This means that two events may happen at the same time.
The same event takes place only once in the same execution. Hence, we also

require:

∀ i , j ∈ [1..#h] : i �= j ⇒ h[i ] �= h[j ]

The following constraint makes sure that time will eventually progress beyond
any finite point in time:

#h =∞⇒ ∀ t ∈ R : ∃ i ∈ N : r .h[i ] > t

That is, for any timestamp t in an infinite trace h there is an event in h
whose timestamp t ′ is greater than t .

2 The functions k ,m, t , tr , re on E are lifted to [[ E ]] in the obvious manner.
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For any single message, transmission must happen before reception, which
must happen before consumption. However, in a particular sequence diagram
we may have only the transmitter or the receiver lifeline present. Thus we get
the following well-formedness requirements on traces, stating that if at any point
in the trace we have a transmission event, up to that point we must have had
at least as many transmissions as receptions of that particular message, and
similarly for reception events with respect to consumptions:

∀ i ∈ [1..#h] : k .h[i ] = ! ⇒ (2)

#({ !} × {m.h[i ]} ×U ) S© h|i > #({∼} × {m.h[i ]} ×U ) S© h|i
∀ i ∈ [1..#h] : k .h[i ] =∼⇒ (3)

#({∼} × {m.h[i ]} ×U ) S© h|i > #({?} × {m.h[i ]} ×U ) S© h|i

where U def= {t → r | t ∈ T ∧ r ∈ R}. H denotes the set of all well-formed
traces.

We define three basic composition operators on trace sets, namely paral-
lel execution, weak sequencing, and time constraint denoted by ‖, �, and �,
respectively.

Informally, s1 ‖ s2 is the set of all traces such that

– all events from s1 and s2 are included (and no other events),
– the ordering of events from s1 and from s2 is preserved.

Formally:

s1 ‖ s2
def= {h ∈ H | ∃ p ∈ {1, 2}∞ :

π2(({1} × [[ E ]]) T© (p, h)) ∈ s1 ∧ (4)

π2(({2} × [[ E ]]) T© (p, h)) ∈ s2}

In this definition, we make use of an oracle, the infinite sequence p, to resolve
the non-determinism in the interleaving. It determines the order in which events
from traces in s1 and s2 are sequenced. π2 is a projection operator returning the
second element of a pair.

For s1 � s2 we have the constraint that events on a lifeline from s1 should
come before events from s2 on the same lifeline:

s1 � s2
def= {h ∈ H | ∃ h1 ∈ s1, h2 ∈ s2 : ∀ l ∈ L : (5)

e.l S© h = e.l S© h1
� e.l S© h2}

e.l denotes the set of events that may take place on the lifeline l . Formally:

e.l def= {e ∈ [[ E ]] | (k .e =! ∧ tr .e = l) ∨ (k .e ∈ {∼, ?} ∧ re.e = l)} (6)
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Time constraint is defined as

s � C def= {h ∈ s | h |= C} (7)

where h |= C holds if for all possible assignments of timestamps to timestamp
tags done by h, there is an assignment of timestamps to the remaining timestamp
tags in C (possibly none) such that C evaluates to true. For example, if

h = 〈(k1, m1, t1 → r1), (k2, m2, t2 → r2), (k3, m3, t2 → r3)〉, C = t1 < t2

then h |= C if r1 < r2 and r1 < r3.

3.3 Interaction Obligations

An interaction obligation is a pair (p, n) of sets of traces where the first set is
interpreted as the set of positive traces and the second set is the set of negative
traces. The term obligation is used to explicitly convey that any implementation
of a specification is obliged to fulfill each specified alternative.

O denotes the set of interaction obligations. Parallel execution, weak se-
quencing and time constraint are overloaded from sets of traces to interaction
obligations as follows:

(p1, n1) ‖ (p2, n2)
def= (p1 ‖ p2, (n1 ‖ (p2 ∪ n2)) ∪ (n2 ‖ p1)) (8)

(p1, n1) � (p2, n2)
def= (p1 � p2, (n1 � (n2 ∪ p2)) ∪ (p1 � n2)) (9)

(p, n) � C def= (p � C , n ∪ (p � ¬C )) (10)

An obligation pair (p, n) is contradictory if p ∩ n �= ∅.
The operators for parallel execution, weak sequencing and time constraint

are also overloaded to sets of interaction obligations:

O1 ‖ O2
def= {o1 ‖ o2 | o1 ∈ O1 ∧ o2 ∈ O2} (11)

O1 � O2
def= {o1 � o2 | o1 ∈ O1 ∧ o2 ∈ O2} (12)

O1 � C def= {o1 � C | o1 ∈ O1} (13)

We also define an operator for inner union of sets of interaction obligations:

O1 �O2
def= {(p1 ∪ p2, n1 ∪ n2) | (p1, n1) ∈ O1 ∧ (p2, n2) ∈ O2} (14)

3.4 Semantics of Sequence Diagrams

The semantics of sequence diagrams is defined by a function

[[ ]] ∈ D → P(O)

that for any sequence diagram d yields a set [[ d ]] of interaction obligations.
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An event is represented by infinitely many unary positive traces – one for
each possible assignment of timestamp to its timestamp tag:

[[ (k , m, t) ]] def= {({〈(k , m, t → r)〉 | r ∈ R}, ∅)} if (k , m, t) ∈ E (15)

The neg construct defines negative traces:

[[ neg d ]] def= {({〈〉}, p ∪ n) | (p, n) ∈ [[ d ]]} (16)

Notice that a negative trace cannot be made positive by reapplying neg. Negative
traces remain negative. Negation is an operation that characterizes traces abso-
lutely and not relatively. The intuition is that the focus of the neg construct is on
characterizing the positive traces in the operand as negative. Negative traces will
always propagate as negative to the outermost level. The neg construct defines
the empty trace as positive. This facilitates the embedding of negs in sequence
diagrams also specifying positive behavior.

The assert construct makes all inconclusive traces negative. Except for that
the sets of positive and negative traces are left unchanged:

[[ assert d ]] def= {(p, n ∪ (H \ p)) | (p, n) ∈ [[ d ]]} (17)

Note that contradictory obligation pairs remain contradictory.
The alt construct defines potential traces. The semantics is the union of the

trace sets for both positive and negative:

[[ d1 alt d2 ]] def= [[ d1 ]] � [[ d2 ]] (18)

The xalt construct defines mandatory choices. All implementations must be
able to handle every interaction obligation:

[[ d1 xalt d2 ]] def= [[ d1 ]] ∪ [[ d2 ]] (19)

Notice that the sets of negative traces are not combined as is the case with the
alt. This is due to the fact that we want to allow behaviors that are positive
in one interaction obligation to be negative in another interaction obligation.
The intuition behind this is as follows: All positive behaviors in an interaction
obligation serve the same overall purpose, e.g. different ways of making beef.
Alternative ways of making beef can be introduced by the alt operator. Hence,
a behavior cannot be present in both the positive and negative trace sets of
an interaction obligation as this would lead to a contradictory specification.
However, behaviors specified by different interaction obligations are meant to
serve different purposes, e.g. make beef dish and make vegetarian dish. There is
nothing wrong about stating that a behavior which is positive in one interaction
obligation is negative in another. E.g. steak beef would definitely be positive in
a beef context and negative in a vegetarian context. By insisting on separate
negative sets of interaction obligations we achieve this wanted property.
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The par construct represents a parallel merge. Any trace involving a negative
trace will remain negative in the resulting interaction obligation:

[[ d1 par d2 ]] def= [[ d1 ]] ‖ [[ d2 ]] (20)

The seq construct defines weak sequencing which is the implicit composition
mechanism combining constructs of a sequence diagram. For explicit composi-
tion, the combined fragments are used:

[[ d1 seq d2 ]] def= [[ d1 ]] � [[ d2 ]] (21)

The tc construct defines the effect of a time constraint. The positive traces
of the operand that do not fulfill the constraint become negative in the result.
The negative traces of the operand remain negative regardless of whether they
fulfill the constraint:

[[ d tc C ]] def= [[ d ]] � C (22)

4 Two Abstractions

An example to illustrate the importance of distinguishing between the message
reception and the message consumption event when dealing with timed specifi-
cations goes as follows: A restaurant chain specifies in a sequence diagram (see
Figure 3) that it should never take more than 10 minutes to prepare a beef
dish. The specification is handed over to the local restaurant owner who takes
these requirements as an input to the design process of her/his local restaurant.
When testing the time it takes to prepare a beef the restaurant finds that it
is in accordance with the timing requirements. However, when the restaurant
chain inspector comes to verify that the timing policies of the chain are obeyed
in the operational restaurant he finds that it takes much longer time than 10
minutes to prepare the beef. Thus, the inspector claims that the restaurant is
not working according to the timing requirements while the restaurant owner
claims they are working according to the requirements. Who is right? According
to UML both are right as there is no notion of buffering of communication in
UML. Whether the message arrival of “main dish please” to the kitchen shall be
regarded as message reception or consumption is not defined in the semantics of
UML, and hence, it is up to the users of the diagrams to interpret the meaning.

In this section we define two abstractions over the triple event semantics
that match the two different views in the example above, namely the standard
interpretation and the black-box interpretation.

4.1 Standard Interpretation

The standard interpretation is meant to represent the traditional way of inter-
preting graphical sequence diagrams, namely that the input event of a message
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Fig. 3. Restaurant specification with time constraint

at a lifeline represents a consumption. We then only take send (!) and consume
(?) events into consideration. Thus, we abstract away the fact that a message
will arrive and be stored before it is consumed by the object. The standard in-
terpretation sees graphical sequence diagrams like the diagram in Figure 3 as
“standard diagrams”.

The semantics of standard diagrams is defined in exactly the same manner as
for general sequence diagrams in Section 3, except that the semantics of events
is redefined as follows:

[[ (k , m, t) ]] def= {({h ′ �〈(k , m, t → r)〉� h ′′ ∈ H | (23)

h ′, h ′′ ∈ E (l ,∼) ω ∧#h ′ <∞∧ r ∈ R},
∅)}

where l = tr .e if k .e = ! and l = re.e if k .e =?.
This definition says essentially that in a standard diagram, reception events

may happen anywhere on the relevant lifeline (as long as the well-formedness
conditions (2) and (3) are obeyed) since they are considered irrelevant in this
setting.

If we apply the standard interpretation to the diagram in Figure 3, every
positive trace h is such that

{e ∈ [[ E ]] | k .e �=∼} S© h =

〈(!, m, t1 → r1), (?, m, t3 → r3), (!, n, t4 → r4), (?, n, t6 → r6)〉
where r4 ≤ r3 + 10, m stands for “main dish please” and n stands for “main
dish:sirloin”. The implicit reception of m can happen at any point between the
corresponding transmission and consumption events, and similarly for n (and
any other message).

4.2 Black-Box Interpretation

The black-box interpretation represents the view where the input event of a
message at a lifeline represents a reception event. The black-box interpretation



Why Timed Sequence Diagrams Require Three-Event Semantics 13

sees graphical sequence diagrams like the diagram in Figure 3 as “black-box
diagrams”.

As with standard diagrams, the semantics of black-box diagrams is defined
in exactly the same manner as for general sequence diagrams in section 3 except
that the semantics of events is redefined as follows:

[[ (k , m, t) ]] def= {({h ′ �〈(k , m, t → r)〉� h ′′ ∈ H | (24)

h ′, h ′′ ∈ E (l , ?) ω ∧#h ′ <∞∧ r ∈ R},
∅)}

where l = tr .e if k .e = ! and l = re.e if k .e =∼.
If we apply the black-box interpretation to the diagram in Figure 3, every

positive trace h is such that

{e ∈ [[ E ]] | k .e �=?} S© h =

〈(!, m, t1 → r1), (∼, m, t2 → r2), (!, n, t4 → r4), (∼, n, t5 → r5)〉

where r4 ≤ r2 + 10. Note that we do not impose any constraint on the implicit
consumption events, except that the consumption cannot take place before its
reception (if it takes place at all).

5 The General Case

We have shown that input events are most naturally (standard) interpreted as
consumption when they appear on lifelines that represent atomic processes and
their concrete implementations should be derived from the lifelines. We have
also shown that there are reasons, e.g. timing constraints, that sometimes make
it necessary to consider the input event as representing the reception. Moreover,
we have seen that timing constraints may also make good sense when applied to
consumption events.

In fact we believe that notation for both reception and consumption events
are necessary, but that most often for any given message a two-event notation
will suffice. Sometimes the message will end in the reception and sometimes
in the consumption, but seldom there is a need to make both the reception
and the consumption explicit. There are, however, exceptions where all three
events must be present to convey the exact meaning of the scenario. Hence,
we will in the following introduce graphical notation in order to be able to
explicitly state whether a message input event at a lifeline shall be interpreted
as a reception event or a consumption event. That is, whether standard or black-
box interpretation shall be applied.

Figure 4 shows the graphical notation to specify that a message input event at
a lifeline shall be interpreted as a consumption event. Syntactically this notation
is equal to the one applied for ordinary two-event sequence diagrams.
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Fig. 4. Graphical syntax for specifying standard interpretation
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Fig. 5. Graphical syntax for specifying black-box interpretation

We express that a message input event at a lifeline shall be interpreted as a
reception event and thus be given black-box interpretation by the double arrow-
head as shown in Figure 5. We will in the following give some examples of the full
approach describing reception events as well as consumption events explicitly.

Let us return to the dinner example where we may assume that the cook
is not really one single person, but actually a chef and his apprentice. We may
decompose the cook lifeline into new sequence diagrams where the chef and
apprentice constitute the internal lifelines. We have shown this in Figure 6 for
the preparation of beef shown originally in Figure 2. Let us assume that the
apprentice wants to go and get the meat before heating the stove. His priorities
may be so because heating the stove is more of a burden, or because the refrig-
erator is closer at hand. For our purposes we would like to describe a scenario
that highlights that the apprentice fetches the meat before heating the stove
even though he received the order to turn on the heat first.

In Figure 6 we have shown some explicit reception events, but we have cho-
sen not to show explicitly the corresponding consumptions. This is because our
needs were to describe the relationship between the receptions and the actions
(outputs) of the apprentice.

The consumptions were considered less important. The disadvantage of this
is that we cannot from Figure 6 deduce whether the apprentice actually fetched
the meat because he received the order “go fetch meat” or the order “go turn on
heat”. The reader should appreciate that the “fetch meat” message crosses the
other messages only due to the need to graphically let the formal gates match the
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Fig. 6. Prioritizing to fetch the meat
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Fig. 7. The whole truth
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events on the decomposed Cook lifeline shown in Figure 2. Semantically there is
no ordering between gates. For a formal treatment of gates, see [HHRS04].

If we want to give an even more detailed account of the apprentice’s options,
we may introduce both reception and consumption events. We have done so in
Figure 7.

In Figure 7 we see that the chef instructs the apprentice to go turn on heat and
to go and fetch meat. The apprentice makes independent decisions for the order
of consumption. Here he has decided to consume the order to go fetch meat before
consuming go turn on heat. Now we can easily see that the apprentice reacts
adequately to the consumptions. It is of course rather risky for the apprentice
not to react immediately to the chef’s order to turn on the heat, but we may
remedy this by timetagging the message receptions of “go turn on heat” and “go
fetch meat”. Then we specify that the scenario is only valid if these receptions
are sufficiently close together in time by a formula including these time tags.

As the examples in this section demonstrate, we have cases where we need to
explicitly describe both reception and consumption events in the same diagram,
but seldom for the same message. This means that general diagrams may con-
tain standard, black-box as well as three-event arrows. The semantics of such
diagrams is fixed by the definitions in Section 3 with two exceptions:

– The semantics of a consumption event of a standard arrow should be as for
consumption events in the standard case (see Section 4.1).

– The semantics of a receive event of a black-box arrow should be as for receive
events in the black-box case (see Section 4.2).

6 Refinement

Refinement means to add information to a specification such that the specifi-
cation becomes closer to an implementation. The set of potential traces will be
narrowed and situations that we have not yet considered will be supplemented.
We define formally two forms of refinement - glass-box refinement which takes
the full semantics of the diagram into account, and black-box refinement which
only considers changes that are externally visible.

Negative traces must always remain negative in a refinement, while positive
traces may remain positive or become negative if the trace has been cancelled
out. Inconclusive traces may go anywhere.

6.1 Definition of Glass-Box Refinement

An interaction obligation (p2, n2) is a refinement of an interaction obligation
(p1, n1), written (p1, n1) �r (p2, n2), iff

n1 ⊆ n2 ∧ p1 ⊆ p2 ∪ n2 (25)

A set of interaction obligations O ′
1 is a glass-box refinement of a set O1,

written O1 �g O ′
1, iff

∀ o ∈ O1 : ∃ o′ ∈ O ′
1 : o �r o′ (26)
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A sequence diagram d ′ is then a glass-box refinement of a sequence diagram
d , written d �g d ′, iff

[[ d ]] �g [[ d ′ ]] (27)

The refinement semantics supports the classical notion of compositional re-
finement providing a firm foundation for compositional analysis, verification and
testing. In [HHRS04] we prove that refinement as defined above is transitive. We
also prove that it is monotonic with respect to the operators presented in Section
3.4, except from assert. For assert, we have monotonicity in the special case of
narrowing defined below.

6.2 Supplementing and Narrowing

Supplementing and narrowing are special cases of the general notion of refine-
ment. Supplementing categorizes inconclusive behavior as either positive or neg-
ative. An interaction obligation (p2, n2) supplements an interaction obligation
(p1, n1), written (p1, n1) �s (p2, n2), iff

(n1 ⊂ n2 ∧ p1 ⊆ p2) ∨ (n1 ⊆ n2 ∧ p1 ⊂ p2) (28)

Narrowing reduces the allowed behavior to match the problem better. An
interaction obligation (p2, n2) narrows an interaction obligation (p1, n1), written
(p1, n1) �n (p2, n2), iff

p2 ⊂ p1 ∧ n2 = n1 ∪ (p1 \ p2) (29)

6.3 Example of Glass-Box Refinement

We want to refine the Beef Cook diagram presented in Figure 7. In a glass-box
refinement we are interested in the complete traces described by the diagram,
and a selection and/or a supplement of these traces.

Figure 8 is a glass-box refinement of Figure 7. In this diagram we state that
we no longer want gravy, but Beárnaise sauce instead. Defining gravy as negative
is a narrowing, as it means to reduce the set of positive traces of the original
specification. The traces with Beárnaise sauce was earlier considered inconclusive
(i.e. neither positive nor negative), but are now defined as positive. This is an
example of supplementing. In addition, the diagram in Figure 8 permits using
no sauce at all. This is because the neg fragment also introduces the empty trace
(〈〉) as positive. We summarize these changes in Figure 9.

6.4 Definition of Black-Box Refinement

Black-box refinement may be understood as refinement restricted to the exter-
nally visible behavior. We define the function

ext ∈ H × P(L)→ H

to yield the trace obtained from the trace given as first argument by filtering
away those events that are internal with respect to the set of lifelines given as
second argument, i.e.:
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Fig. 8. Glass-box refinement of Beef Cook
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Fig. 9. Summary glass-box refinement

ext(h, l) def= {e ∈ [[ E ]] | (tr .e �∈ l ∨ re.e �∈ l) ∧ k .e �=?} S© h (30)

The ext operator is overloaded to sets of traces, to pairs of sets of traces, and
sets of pairs of sets of traces in the standard pointwise manner, e.g.:
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ext(s, l) def= {ext(h, l) | h ∈ s} (31)

A sequence diagram d ′ is a black-box refinement of a sequence diagram d ,
written d �b d ′, iff

∀ o ∈ [[ d ]] : ∃ o′ ∈ [[ d ′ ]] : ext(o, ll(d)) �r ext(o′, ll(d ′)) (32)

Notice that the ext operator also filters away all consumption events re-
gardless of lifeline, as was the case with black-box interpretation of sequence
diagrams. Thus, black-box refinement is mainly relevant in the context of black-
box interpretation (even though it may also be applied to standard diagrams).

6.5 Example of Black-Box Refinement

It is obvious from the definition of black-box refinement that any glass-box re-
finement is also a black-box refinement. What would be a black-box refinement
in our Beef Cook context, but not a glass-box refinement? If we in a refinement
of the specification in Figure 7 had just replaced the gravy with Bearnaise, this
change would not affect the externally visible behavior of Beef Cook as it is
defined, and would therefore be a legal black-box refinement. However, it would
not be a glass-box refinement since the traces involving gravy have been lost
(they are now inconclusive), and this violates the definition.

6.6 Detailing

When we increase the granularity of sequence diagrams we call this a detailing of
the specification. The granularity can be altered in two different ways: either by
decomposing the lifelines such that their inner parts and their internal behavior
are displayed in the diagram or by changing the data-structure of messages such
that they convey more detailed information.

Black-box refinement is sufficiently general to formalize lifeline decomposi-
tions that are not externally visible. However, many lifeline decompositions are
externally visible. As an example of a lifeline decomposition that is externally
visible, consider the decomposition of Beef Cook in Figure 6. The messages that
originally (in Figure 2) had the Cook as sender/receiver, now have the chef or
the apprentice as sender/receiver.

To allow for this, we extend the definition of black-box refinement with the
notion of a lifeline substitution. The resulting refinement relation is called lifeline
decomposition. A lifeline substitution is a partial function of type L → L. LS
denotes the set of all such substitutions. We define the function

subst ∈ D × LS → D

such that subst(d , ls) yields the sequence diagram obtained from d by substitut-
ing every lifeline l in d for which ls is defined with the lifeline ls(l).

We then define that a sequence diagram d ′ is a lifeline decomposition of a
sequence diagram d with respect to a lifeline substitution ls, written d �ls

l d ′,
iff

d �b subst(d ′, ls)
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Changing the data-structure of messages may be understood as black-box
refinement modulo a translation of the externally visible behavior. This trans-
lation is specified by a sequence diagram t , and we refer to this as an interface
refinement.

We define that a sequence diagram d ′ is an interface refinement of a sequence
diagram d with respect to a sequence diagram t , written d �t

i d ′, iff

d �b (t seq d ′)

Detailing may then be understood as the transitive and reflexive closure of
lifeline decomposition and interface refinement.

6.7 Refinement Through Time Constraints

Having given examples of refinement in terms of pure event manipulation and
trace selection, we go on to present an example where time constraints represent
the refinement constructs.

We will now introduce two time refinements as indicated in Figures 10 and
11. First we would like to make sure that beefs are neither burned nor raw when
fetched from the stove. To make sure that this constraint holds we will put the
time constraint on the consumption event of the “put on grill” message. This is
because it is the time that the beef is actually present on the stove that matters
with respect to how much it is grilled, not the time the beef lies on a plate
beside the stove waiting for free space on the stove. All behaviors that do not
meet this time constraint are considered negative according to definition (22) of
time constraint semantics. Traces that originally were positive are because of the
new time constraint now defined as negative. Thus, this step constitutes a glass-
box refinement according to definition (27). In fact, it is a narrowing as defined
by definition (29). Since the consumption events and transmit events locally
define the object behavior, it is only the behavior of the stove that is affected by
this refinement step, and not the environment. Using double arrowhead on the
“put on grill” message we would not be able to express the intended refinement
because it is necessary to talk about message consumption. On the other hand,
comparing Figure 10 with the original diagram in Figure 2, we have replaced a
standard arrow with a three-event arrow. This is a valid refinement, as it means
to make explicit one of the implicit reception events that are already present in
the semantics of Figure 2.

Next we would like to limit the overall time it takes to prepare a beef. This
represents a customer requirement on the kitchen as illustrated in Figure 11.
However, the customer does not care about the details of beef preparation, just
that it is prepared in time. As seen from Figure 11 this can be interpreted as a
time constraint on the reception event. In the same manner as with the glass-
box refinement above, the introduction of the time constraint is a narrowing that
“moves” traces from the set of positive traces to the set of negative traces. We
are not concerned about where the beef spends its time in the kitchen during
the preparation process, just that it is prepared in time.
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Fig. 10. Imposing constraints on timing
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Fig. 11. Customer requirement on the beef preparation time

7 Conclusions and Related Work

We have presented Timed STAIRS, a formal approach to the step-wise, incre-
mental development of timed sequence diagrams. It is based on trace semantics.
Traces are sequences of events. Events are representations of sending, receiving
and consuming messages.

Three event semantics of sequence diagrams has been considered before. In
[EMR97] the event ordering imposed by the MSCs is used to determine the
physical architecture needed for implementing the specified behavior such as
a FIFO buffer between each of the processes. In Timed Stairs we implicitly
assume that every object has one associated input buffer unless something else
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is explicitly specified in the diagrams. Thus, we do not deduce the communication
architecture from the sequence diagrams but instead make it an option for the
designer to explicitly specify the wanted architecture in the diagrams. The main
rationale for introducing the three event semantics in Timed STAIRS is to be
able to distinguish between reception and consumption of messages in order to
specify time-constraints on black-box behavior as well as message consumption.
Hence, the purpose of the three event semantics is quite different from [EMR97]
where time and black-box behavior is not considered.

To consider not only positive traces, but also negative ones, has been sug-
gested before. In [Hau95] the proposed methodology stated that specifying neg-
ative scenarios could be even more practical and powerful than only specifying
the possible or mandatory ones. It was made clear that the MSC-92 standard
[ITU93] was not sufficient to express the intention behind the scenarios and that
the MSC documents had to be supplemented with informal statements about
the intended interpretation of the set of traces expressed by the different MSCs.

The algebraic semantics of MSC-92 [ITU94] gave rise to a canonical logical
expression restricted to the strict sequencing operator and a choice operator.
When the MSC standard evolved with more advanced structuring mechanisms,
the formal semantics as given in [ITU98] and [Ren98] was based on sets of traces,
but it was still expressed in algebraic terms. The MSC approach to sequence
diagram semantics is an interleaving semantics based on a fully compositional
paradigm. The set of traces denoting the semantics of a message sequence chart
can be calculated from its constituent parts based on definitions of the semantics
of the structuring concepts as operators. This is very much the approach that we
base our semantics on as we calculate our semantics of an interaction fragment
from the semantics of its internal fragments. The notion of negative traces, and
the explicit distinction between mandatory and potential behavior is beyond the
MSC language and its semantics. The Eindhoven school of MSC researchers led
by Sjouke Mauw concentrated mainly on establishing the formal properties of
the logical systems used for defining the semantics, and also how this could be
applied to make tools.

The need for describing also the intention behind the scenarios motivated the
so-called “two-layer” approaches. In [CPRO95] they showed how MSC could be
combined with languages for temporal logics such as CTL letting the scenarios
constitute the atoms for the higher level of modal descriptions. With this one
could describe that certain scenarios should appear or should never appear.

Damm and Harel brought this further through their augmented MSC lan-
guage LSC (Live Sequence Charts) [DH99]. This may also be characterized as
a two-layer approach as it takes the basic message sequence charts as starting
point and add modal characteristics upon those. The modal expressiveness is
strong in LSC since charts, locations, messages and conditions are orthogonally
characterized as either mandatory or provisional. Since LSC also includes a no-
tion of subchart, the combinatory complexity can be quite high. The “inline
expressions” of MSC-96 (corresponding to combined fragments in UML 2.0) and
MSC documents as in MSC-2000 [Hau01] (corresponds to classifier in UML 2.0)
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are, however, not included in LSC. Mandatory charts are called universal. Their
interpretation is that provided their initial condition holds, these charts must
happen. Mandatory as in LSC should not be confused with mandatory as in
Timed STAIRS, since the latter only specifies traces that must be present in an
implementation while the first specifies all allowed traces. Hence, mandatory as
in Timed STAIRS does not distinguish between universal or existential interpre-
tation, but rather gives a restriction on what behaviors that must be kept during
a refinement. Provisional charts are called existential and they may happen if
their initial condition holds. Through mandatory charts it is of course indirectly
also possible to define scenarios that are forbidden or negative. Their semantics
is said to be a conservative extension of the original MSC semantics, but their
construction of the semantics is based on a two-stage procedure. The first stage
defines a symbolic transition system from an LSC and from that a set of execu-
tions accepted by the LSC is produced. These executions represent traces where
each basic element is a snapshot of a corresponding system.

The motivation behind LSC is explicitly to relate sequence diagrams to other
system descriptions, typically defined with state machines. Harel has also been
involved in the development of a tool-supported methodology that uses LSC
as a way to prescribe systems as well as verifying the correspondence between
manually described LSCs and State Machines [HM03].

Our approach is similar to LSC since it is basically interleaving. Timed
STAIRS is essentially one-stage as the modal distinction between the positive
and negative traces in principle is present in every fragment. The final modality
results directly from the semantic compositions. With respect to language, we
consider almost only what is UML 2.0, while LSC is a language extension of its
own. LSC could in the future become a particular UML profile. Furthermore, our
focus is on refinement of sequence diagrams as a means for system development
and system validation. This means that in our approach the distinction between
mandatory and provisional is captured through the interaction obligations.

The work by Krüger [Krü00] addresses similar concerns as the ones intro-
duced in this article and covered by the LSC-approach of Harel. Just as with
LSC MSCs can be given interpretations as existential or universal. The exact
and negative interpretations are also introduced. Krüger also proposes notions
of refinement for MSCs. Binding references, interface refinement, property re-
finement and structural refinement are refinement relations between MSCs at
different level of abstraction. Narrowing as described in Timed STAIRS corre-
sponds closely to property refinement in [Krü00] and detailing corresponds to
interface refinement and structural refinement. However, Krüger does not dis-
tinguish between intended non-determinism and non-determinism as a result of
under-specification in the refinement relation.

Although this paper presents Timed STAIRS in the setting of UML 2.0 se-
quence diagrams, the underlying principles apply just as well to MSC given that
the MSC language is extended with an xalt construct similar to the one pro-
posed above for UML 2.0. Timed STAIRS may also be adapted to support LSC.
Timed STAIRS is complementary to software development processes based on
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use-cases, and classical object-oriented approaches such as the Unified Process
[JBR99]. Timed STAIRS provides formal foundation for the basic incremental
steps of such processes.
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Abstract. The play-in/play-out approach is a method for specifying
and developing complex reactive systems. It is built upon a scenario-
based philosophy, and uses the language of live sequence charts (LSCs)
and a support tool called the Play-Engine. We present some conclusions
from the initial experience we have had using the approach on several
projects, and discuss methodological aspects rising from this experience.
The projects are from aviation, telecommunication and system manufac-
turing domains.

1 Introduction

Understanding system and software behavior by looking at various “stories”
or scenarios seems a promising approach, and it has focused intensive research
efforts in the last few years. One of the most widely used languages for specifying
scenario-based requirements is that of message sequence charts (MSCs), adopted
long ago by the ITU [Z1296], or its UML variant, sequence diagrams [UML].
Sequence charts (whether MSCs or their UML variant) possess a rather weak
partial-order semantics that does not make it possible to capture many kinds
of behavioral requirements of a system. To address this, while remaining within
the general spirit of scenario-based visual formalisms, a broad extension of MSCs
has been proposed, called live sequence charts (LSCs) [DH01]. LSCs distinguish
between behaviors that may happen in the system (existential) from those that
must happen (universal). A universal chart contains a prechart, which specifies
the scenario which, if successfully executed, forces the system to satisfy the
scenario given in the actual chart body. The distinction between mandatory
(hot) and provisional (cold) applies also to other LSC constructs, e.g., conditions
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and locations, thus creating a rich and powerful language, which among many
other things can express forbidden behavior (‘anti-scenarios’).

In [HM03a, HM03b] a methodology for specifying and validating require-
ments, termed the “play-in/play-out approach” is described. According to this
approach, requirements are captured by the user playing in scenarios using a
graphical interface of the system to be developed or using an object model dia-
gram. The user “plays” the GUI by clicking buttons, rotating knobs and send-
ing messages (calling functions) to objects in an intuitive manner. By similarly
playing the GUI, the user describes the desired reactions of the system and the
conditions that may, must or may not hold. As this is being done, the support-
ing tool, called the Play-Engine, constructs a formal version of the requirements
in the form of LSCs. Note that it is not always necessary to spend much time
designing a fancy graphical interface. In many cases, it is enough to use a stan-
dard object model diagram. Our tool, the Play-Engine, support class diagrams
and allows to work with, so called, internal objects that are not reflected in the
GUI.

                                 (LSCs)                    (Play-In)                   (Play-Out)                  (Smart Play-Out)
Play-Engine =    Scenarios DB  +   Input Mechanism   +  Execution Engine   +  Analysis Tools

Fig. 1. Play-Engine Scheme

Play-out is a complementary idea to play-in, which, rather surprisingly, makes
it possible to execute the requirements directly. In play-out, the user simply plays
the GUI application as he/she would have done when executing a system model,
or the final system implementation, but limiting him/herself to “end-user” and
external environment actions only. While doing this, the Play-Engine keeps track
of the actions and causes other actions and events to occur as dictated by the
universal charts in the specification. Here too, the engine interacts with the GUI
application and uses it to reflect the system state at any given moment. This
process of the user operating the GUI application and the Play-Engine caus-
ing it to react according to the specification has the effect of working with an
executable model, but with no intra-object model having to be built or synthe-
sized.

The play-in/play-out approach is supported by a prototype tool called the
Play-Engine, described in detail in [HM03a]. The approach appears to be use-
ful in many stages in the development of reactive software, including require-
ments engineering, specification, testing and verification. In the long run it
might also pave the way to systems that are constructed directly from their
requirements, without the need for intra-object or intra-component modeling or
coding.

Being a new approach that suggests a different way of developing systems,
there are many aspects that are not yet fully understood when one attempts to
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apply the methodology and tools to real-world applications. In this paper we de-
scribe the initial experience we have had using the approach on several projects,
and discuss methodological aspects arising from this experience. The projects
are from aviation, telecommunication and system manufacturing domains. We
should add that another important application of the play-in/play-out approach
is in modeling biological applications [KHK+03], a domain that will not be de-
scribed here but which has also significantly contributed to our methodological
experience.

This paper is not intended as a technical introduction to LSCs. We instead,
try to keep the discussion at a high level, trying to emphasize more general ideas.
Although the focus is on working with LSCs, we believe that our observations
are relevant to other formalisms and modeling methods.

2 Applications

In this section we briefly overview the applications in which the play-in/play-out
approach and Play-Engine tools were applied. This provides an initial idea of
what kinds of systems are well fitted to the approach. Later on in the paper,
these applications will be used to demonstrate and discuss the methodological
issues arising while using the play-in/play-out approach.

2.1 IAI - Sensor Voting and Monitoring

In this application, provided by the Israeli Aircraft Industry (IAI), a subsys-
tem of a flight control computer in an unmanned air vehicle (UAV) is modeled
using LSCs and the Play-Engine. The main role of a flight control computer
is to implement control loops of servo actuators controlling the air vehicle sur-
faces. The computer computations are influenced by the actual values provided
periodically by different sensors installed in the air vehicle. To achieve high re-
liability, a redundancy of sensors and flight control computers is used. A voting
and monitoring procedure samples the redundant sensors determining that they
are in a reasonable range, disqualifying sensors that are out of range for several
consecutive rounds. The communication between the sensors and computers is
via a central bus. Timing play a critical role in this application, and among
the goals of our work is to prove the correctness of the voting and monitoring
algorithm and to suggest optimized time delays that can still guarantee correct-
ness.

2.2 NLR - MARS Application

The Medium Altitude Reconnaissance System (MARS) is deployed by the Royal
Netherlands Air Force on the F16 aircraft. The system employs two cameras to
capture high resolution images, and corrects the image degradation caused by the
forward motion of the aircraft. The system is responsible for producing frame
annotation, performing health monitoring and alarm processing functions. A
high level description of system requirements of a subsystem of MARS dealing
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with data capturing and processing activities has been modeled using LSCs and
the Play-Engine. Again, timing information plays a very important part in the
requirements.

2.3 FTRD - Depannage

This application is a telecommunication service called Depannage, provided by
France Telecom. The Depannage service allows a user to make a phone call and
ask for the help of a doctor, fire brigade, car maintenance, etc. The service invo-
cation software first asks for authentication of the calling user, and then searches
for the calling location. Once the calling location is found, the software searches
in a data base for numbers of potential service providers corresponding to the
Depannage society members in the vicinity of the caller. Once various numbers
are found, the service tries to connect the caller to one of the potential called
numbers (in a sequential or parallel way). In any case the caller should be con-
nected to a secretary or to a vocal box. In parallel a second logic will make
periodic location requests to the Depannage society members in order to record
their latest locations in the data base. The Depannage service is implemented
as a layered application consisting of several components. Each layer or compo-
nent is described by a group of scenarios; the connection between layers is very
clean and precise. The objects in each layer communicate only among themselves
and with the objects in the adjacent layers. This architecture enables applying
methodological approaches to break down the complexity of the system as is
described later on.

2.4 Cybernetix - Smart-Card Manufacturing

This application involves a smart-card personalization machine. For a more com-
prehensive description see [Alb02]. The personalization machine is a typical pro-
duction line consisting of a belt that moves artifacts (smart cards) between
production stations that handle different aspects of the manufacturing, until at
the end of the belt final smart-card products are collected. Cybernetix man-
ufactures machines for smart-card personalization. These machines take piles of
blank smart-cards as raw material, program them with personalized data, print
and test them. The machines have a throughput of thousands of cards per hour.
It is required that the output of cards occurs in a predefined order. Unfortu-
nately, some cards are defective and they have to be discarded, but without
changing the output order of personalized cards. Decisions on how to reorganize
the flow of cards must be taken within fractions of a second, if no production
time is to be lost. The aim of this case study is to model the desired production
requirements, the timing requirements of operations of the machine and on this
basis synthesize the coordination of the tracking of defective cards. The goal is
to maximize the throughput of the machine under certain error assumptions.
Another design objective, specified by Cybernetix, is to shorten the machine,
i.e., use less slots. This means that we would like to show that it is possible to
handle all errors using the minimal number of belt slots.
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3 Methodology

3.1 How to Build the GUI

A central idea in the play-in/play-out approach is that a graphic user interface
(GUI) of the system is constructed and then used to specify the requirements
in the play-in stage and to show the execution during play-out. How do we go
about starting the job of building an appropriate GUI? How do we define the
objects and corresponding attributes and methods, that will later be used in
play-in/play-out?

These questions lead to the observation that there are certain applications
for which a graphical representation is natural and straightforward. For these
the play-in/play-out approach seems particularly effective. An example is the
smart-card manufacturing system described in Section 2.4. The GUI used for
this application appears in Fig. 2.

Fig. 2. Smart Card Manufacturing GUI - CYBERNETIX

Our experience showed that building the GUI is a task that should be done
carefully, as much as possible considering in advance the scenarios and properties
that we later plan to specify and analyze. In a case where several developers and
domain experts are involved, early feedback from all participants is crucial. In
the IAI application (Section 2.1) such feedback helped in building a model that
was natural, useful and relevant to different members of the team. The GUI used
for this application appears in Fig. 3. Building the GUI should be considered to
be a full-fledged modeling activity, and the GUI should reflect interesting and
important parts of the system but not the system in full detail.

An iterative approach for developing the GUI can be useful, starting with a
simple GUI, playing scenarios in via it and then extending it after gaining better
understanding of the application. When refining a GUI in such a manner, for a
certain class of changes, e.g., adding new objects or adding a new attribute to an
existing object, the tool allows performing the changes in the GUI without the
need to re-play in the already existing scenarios. For more complex changes, such
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Fig. 3. Voting and monitoring GUI - IAI case study

as deleting objects and attributes, the existing scenarios must be re-played on the
new GUI. Being a research prototype tool, emphasis was not put on supporting
complex GUI refinements in an automatic fashion, but such directions may be
explored in future versions of the tool.

3.2 GUI vs. Internal Objects

Internal objects, described in the form of an object model diagram [UML], can be
used to describe objects that do not have a meaningful or convenient graphical
representation. The Play-Engine supports describing some of the objects in the
GUI and others as internal objects represented in an object model diagram. An
example from the FTRD application appears in Fig. 4. In object model diagrams
each object is depicted by a box, showing its attributes and methods. During
play-out the values of attributes are updated in the diagram as they change,
and arrows are drawn dynamically by the PlayEngine to reflect the message
communication between objects. The play-in and play-out processes are fully
supported in the Play-Engine for internal objects. This capability also provides
an alternative to building a specially tailored GUI, thus saving valuable time.
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Fig. 4. Internal objects in the FTRD case study

In two of our applications, those of NLR (Section 2.2) and FTRD (Sec-
tion 2.3), most of the system was described using internal objects, partly due to
the fact that the systems were not graphical in nature, and also to allow quick
progress to the scenario elucidation phase. This success causes us to believe that
using variants of object model diagrams is a practical approach. We expect that
better tool support for this, which would allow, for example, the use of multiple
diagrams and the application of layout algorithms, would enhance the usage of
internal objects. We indeed plan this as part of future versions of the engine.

Although using internal objects and object model diagrams proved practical,
we still think that building a GUI is very worthwhile. The ability to work with
an executable model reflected in a friendly GUI seems important during project
meetings, makes it easier to get feedback and explain issues by the the various
members of the team — not only the programmers.

3.3 GUI’s for Ever-Growing Systems

When modeling real-world systems using the Play-Engine, maintaining the com-
plexity of the graphical representation, either the GUI or internal object dia-
grams becomes quite a challenge. Using a GUI rather than only object diagrams
allows a more succinct representation and so enables capturing larger systems.
Still, even for GUI’s there is a limitation on the amount of information that can
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be represented. Recently, the Play-Engine has been extended to support multi-
ple GUI forms. The basic extension allows different objects to be displayed in
different GUI forms, thus making it possible to decompose the application into
subsystems, maintaining full support for the play-in and play-out activities.

A more advanced extension is presented in the recent work on InterPlay
[BHM04]. InterPlay is a simulation engine coordinator that supports cooperation
and interaction of multiple simulation and execution tools. It enables connecting
several Play-Engines and also connecting a statechart-based executable model to
the Play-Engine. GUI forms and internal object diagrams can thus be distributed
between various Play-Engines, which makes it possible to handle larger systems.
These new features have not yet been used in the applications described in
this paper, but we hope to use them soon. Our experience in the applications
showed that the internal object diagrams are very useful, and we plan to support
multiple object diagrams within the same Play-Engine in the future. We believe
that experience in other tools that handle large systems in diagrammatic forms
is relevant here and in time will be integrated into the Play-Engine tool.

3.4 Large LSCs vs. Small Ones

One of the methodological questions raised while working on the case studies was
whether we should describe scenarios using large LSCs that specify rich behavior
or to break the behavior into several smaller LSCs that activate and interact with
each other. Although there is no clear answer to this, our experience shows that
a single LSC should not be too large and complex, and that understanding the
relationship between many smaller LSCs can provide insight into the developed
system. We thus suggest that, at least in the initial modeling stages, one should
specify smaller LSCs that describe the basic scenarios. In later stages, more
complex charts can be constructed either separately, or by composing the basic
charts. Our experience also shows that from the perspective of efficient analysis,
handling many small and simple charts that can be interleaved in numerous
ways is harder, thus for the process of applying smart play-out pre-merging
small charts into larger ones has an advantage.

At this stage it is still hard to define precisely what is small vs. large when it
comes to LSCs, and this probably also depends on the context of the application.
However, we believe that being aware of this tradeoff even without a precise
definition is important for users of scenario-based approaches.

To illustrate the above discussion, we describe our experience with the smart
card case study described above. In this case study, a manufacturing machine is
modeled. The machine is composed of a belt and stations that put/take cards
from belt slots and sometimes carry some manufacturing steps. To allow mod-
ularity, we assigned each station with its own scenarios. This defines reusable
objects that can be combined in different ways in order to test various design
options for the machine. To improve the performance of the analysis, we merged
many small scenarios to one big LSC. This improved the speed of properties val-
idation by several orders of magnitude. In principle, merging charts is a formal
process that can be mechanized, e.g., using algorithms developed in [Gil03]. We
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used both models, interchangeably, depending on which aspect of the system we
wanted to examine.

3.5 Refinement of LSCs

The counterexample guided abstraction refinement approach is a known method
for model-checking multilayered systems [CGJ+00, CGLZ95, Kur95]. It consists
of an iterative double phase process. The abstraction phase hides the internal
logic of various objects, hence considering them as inputs. This type of abstrac-
tion may lead to traces that cannot be simulated on the complete model. The
refinement phase consists of checking whether the counterexample is real or
spurious. If the example turns out to be incompatible with parts of the model
abstracted out, one can refine the abstraction based on the counterexample. The
process is repeated until the abstraction is good enough to carry an analysis on
the objects that are not abstracted.

Fig. 5. Abstracting the behavior of the Flight Control Computer

This technique is particularly useful for layered models. Layers separation is
conveniently facilitated by putting each layer in a different use-case. Occasionally,
some interesting analysis involves only one layer so it can be carried out on that
layer only. Other properties can be analyzed progressively by breaking them to
separate properties of the layers.

The process of abstraction and refinement of LSCs goes as follows. The user
chooses a part of the system to analyzed. Other parts of the system are removed
from the execution configuration. The specification for objects that are interfac-
ing with the part that is analyzed is only given in a coarse level or not given at
all (over-approximation of the interface). Then, the part that is fully specified is
analyzed in the usual way (by simulation or smart play-out [HKMP02] or both).
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Clearly, such an analysis can lead to traces that are not compatible with the
full system. To verify that a trace is not spurious, the designer can save it as
an existential chart and see if the remaining components can satisfy this chart.
If this is not the case, it is possible to refine the abstraction by adding more
objects and charts to the analyzed part or by addition of more constraints to
the specification of the abstracted part.

We found that it is useful to alter the “External” flag for some objects. As the
name suggests, objects with an “External” flag turned on are considered part
of the environment. Therefore, one way to abstract out the internal behavior of
an object is to remove the charts that specify this behavior from the execution
configuration and make the object external.

A simple example of abstracting behavior appears in the chart of Fig. 5.
Instead of modeling the exact behavior of the flight control computer, which is
quite complex, we can assume at the initial modeling stages that its values are
correlated with those of the CalcVal object. When CalcVal is assigned a new
value, the flight control is nondeterministically assigned either the same value
or that value incremented by 7. In later modeling stages this behavior becomes
more precise, until at the final stages we may model the flight control behavior
in full detail.

3.6 Generic Scenarios

The Play-Engine allows generic scenarios in several ways. One is facilitated by the
use of symbolic instances [MHK02]. This is extremely useful when big systems are
modeled. Specifically, when there are classes of objects with common behavior,
one would like to play-in the behavior using one sample instance but have the
specification apply to all, or some of, the other objects in the class. This is done
by adding annotations to the played-in chart. The annotations specify the range
of objects of the class that the chart should apply to and information that tells
the play-out mechanism how the messages in the chart generalize.

An example of specifying generic behavior in the smart-card application ap-
pears in the chart of Fig. 6. In part (a) an exact scenario of personalization of
a card in personalization site 1 is described, and in part (b) it is turned into a
generic scenario, which holds for any of the personalization sites.

Methodologically, generic charts allow better modularity but are more dif-
ficult to maintain. Once a behavior is well modeled by generic charts that use
symbolic features, it can be used even if objects are added, deleted or moved.
On the other hand, it is more difficult to carry out changes to generic charts
because all possible instantiations need to be considered.

Our conclusion is that scenarios should be made generic only after some
testing and verification has been done. First, some copies of concrete charts
should be created and tested. Once the specification is stable to the satisfaction
of the modeler, annotations can be added and redundant charts eliminated.
Sometimes it is possible to model a small part of the system for testing and to
extend the specification to other objects by symbolic annotations once the test
is passed satisfactorily.
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Fig. 6. Symbolic Instances - Smart-Cards

3.7 Applying Smart Play-Out

Formal modeling alone is useful, but the true power shows when advanced anal-
ysis tools are incorporated. Once you have a formal LSCs model of a system,
you can use an analysis tool called Smart play-out [HKMP02, HM03a] to analyze
and execute it. In particular, it is useful to compute a smart execution for the
model.

Let us explain what a smart execution is: the standard execution called “naive
play-out” does not involve backtracking. The naive play-out chooses one execu-
tion option arbitrarily, i.e., it makes decisions without thinking ahead. Surpris-
ingly, this execution is very useful for many models. Nevertheless, there are sys-
tems for which such a naive execution is not relevant. For these systems, Smart
play-out comes handy. After some analysis, if possible, the engine computes an
execution that doesn’t get stuck.

The smart play-out mechanism allows an LSCs designer to run advanced
queries and get answers based on state-space exploration. Such queries are proved
useful as guidance toward a refinement of a specification or a validation of prop-
erties. The queries come in the form of scenarios that the designer want to verify.
The designer plays-in a scenario and asks the tool if this scenario can be exe-
cuted without violating the model. For example, one can ask if some error can
be fixed within a given time or resources limits.
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Fig. 7. Forbidden Conditions

Verification by state-space exploration, often referred to as model checking,
is the technological basis for smart play-out, and is an effective method for
analyzing concurrent reactive systems (e.g., communication protocols). Smart
play-out performs an exploration of the model state space. This search recur-
sively explores all successor states of all states encountered during the search,
starting from the initial state, by executing all enabled transitions in each state.
Of course, the number of visited states can be very large: this is the well-known
state-explosion problem, which limits the applicability of state-space exploration
techniques.

Since it is rarely possible to model-check industrial sized problems, we suggest
a semi-automatic methodology for smart play-out. In various case studies, a
manual refinement process supported by state space exploration proved fruitful.
Methodologically, we found that it is better to invoke the smart play-out module
only when the degrees of freedom of the model have been reduced. First, the
designer performs a coarse strategy based on simulations with the naive play-
out and intuition. When the strategy is formed such that only a few parameters
are left unknown, smart play-out should be used. The tool is useful both for
the verification of a strategy and for resolving unknowns. Even if a strategy is
refuted, a counter example will be given. This counter example can guide the
designer towards a better strategy.

Before applying smart play-out, the user should provide any available knowl-
edge and understanding of the system in terms of invariants, preconditions and
postconditions. More technically, in LSCs this is done using forbidden elements
which are drawn at the bottom of the chart, as shown in Fig. 7, and have as
their scope the chart, prechart or subchart (see Chapter 17 of [HM03a]). These
impose necessary conditions for the execution of the entire chart or parts of it. If
it clear that it is only relevant to execute a chart under a known condition, the
designer can render the negation of this condition forbidden. Forbidden condi-
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tions reduce the explored state-space dramatically and allow smart play-out to
handle much larger designs.

Another way to reduce the explored state space is to remove unnecessary
nondeterminism. Occasionally, LSC models leave the order of messages unre-
solved. Such nondeterminism can arise when different time-lines on a chart are
not synchronized. Adding synchronization may help facilitate the use of smart
play-out. Also, when the model consists of many small scenarios, we often get
numerous symmetric executions that model the same behavior. Thus, one way
to allow better performance of the smart play-out is to merge charts.

3.8 Queries Supported by Smart Play-Out

As described in Section 3.7, smart play-out can be used to execute LSCs directly
or answer queries. For direct LSC execution, naive play-out seems currently more
useful than smart play-out due to its quick response time. The main use we have
made of smart play-out in our applications is for answering queries. Given an
existential chart and a set of universal charts (an execution configuration) smart
play-out can be asked to try to satisfy the existential chart and all activated
universal charts. If it manages to do so, the satisfying run is played out, providing
full information on the execution and reflecting the behavior in the GUI.

An example of a simple existential chart to be satisfied appears in Fig. 8. This
existential chart requires that eventually the Collector obtain the value 7, which
can occur after six cards have been manufactured successfully. Thus applying
smart play-out to this query finds and exhibits a strategy for manufacturing six
cards.

Fig. 8. Satisfying an existential chart - smart card manufacturing

Two modes of satisfying an existential chart are supported, the standard one
tries to satisfy the existential chart from the current system configuration, i.e.,
starting from the current given attribute values of all objects. The second mode
tries to satisfy the existential charts from any system configuration, allowing
the system to nondeterministically guess the values of the object attributes.
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Currently, in this mode, smart play-out can set the values of attributes that
are designated as “externally changeable”. Our experience shows that it may
be useful to allow advanced users of smart play-out to designate more precisely
which attributes should be set to initial values by smart play-out while satisfying
an existential chart.

Work on the NLR case study raised several issues regarding spontaneous ini-
tiation of system events while satisfying an existential chart. This has led to a
modification of smart play-out to support an additional mode of queries. Accord-
ing to the default mode, system events appearing in the existential chart to be
satisfied can be taken in a spontaneous manner, even without the event appear-
ing in the main chart of an activated universal chart. This mode is useful during
initial stages of building the requirements model, to check whether a certain
behavior is still possible and is not contradicted by the existing universal charts,
or to make sure that a certain ‘bad’ behavior is explicitly ruled out. In later
development stages, the new mode does not allow spontaneous system events to
occur, thus a chart can be satisfied only if it can be satisfied by direct execution
of the LSC specification, e.g., using a play-out mechanism were nondeterminism
is resolved in a certain way. The user has full control over which mode is to be
used by selecting the appropriate checkbox in the smart play-out menu.

4 Related Work

A large amount of work has been done on scenario-based specifications. Amyot
and Eberlein [AE03] provide an extensive survey of scenario notations. Their
paper also defines several comparison criteria and then uses them to compare
the different notations. The idea of using sequence charts to discover design errors
such as race conditions, time conflicts and pattern matching at early stages of
development has been investigated in [AHP96, MPS98]. The language used in
these papers is that of classical Message Sequence Charts, with the semantics
being simply the partial order of events in a chart. In order to describe actual
system behavior, such MSC’s are composed into hierarchal message sequence
charts (HMSC’s) which are basically graphs whose nodes are MSC’s. As has
been observed in several papers, e.g. [AY99], allowing processes to progress along
the HMSC with each chart being in a different node may introduce non-regular
behavior and is the cause of undecidability of certain properties. Undecidability
results and approaches to restrict HMSC’s in order to avoid these problems
appear in [HMKT00a, HMKT00b, GMP01]. In [MR96] a notion of refinement
is defined for the Interworkings scenario-based graphical language. Refinements
for message sequence charts are studied in [Krü00]. The enhanced expressive
power of LSCs makes a definition and application of the refinement concepts
more challenging.

The more expressive language of live sequence charts (LSCs) has been used
for testing and verification of system models. Lettrai and Klose [LK01] present
a methodology supported by a tool called TestConductor, which is integrated
into Rhapsody [IL]. The tool is used for monitoring and testing a model using a
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restricted subset of LSCs. Damm and Klose [DK01, KW01] describe a verification
environment in which LSCs are used to describe requirements that are verified
against a Statemate model implementation.

We believe that one contribution of the present paper is summarizing the ex-
perience we have gained in applying LSCs and the play-in/play-out approach to
several real-world applications. A significant amount of the actual work was car-
ried by industrial partners, allowing us to get effective evaluation and feedback.
We believe that this experience is interesting also for the general application of
related scenario-based methods and tools.
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Abstract. Message Sequence Charts (MSCs) is a notation used in practice by
protocol designers and system engineers. It is defined within an international stan-
dard (ITU Z120), and is also included, in a slightly different form, in the popular
UML standard (called there sequence diagrams). We present some of the main
results related to this notation, in the context of specification and automatic verifi-
cation of communication protocols. We look at issues related to specification and
verification. In particular, we look at automatic verification (model checking) of
MSCs. We study the expressiveness of MSCs, in particular the ability to express
communication protocols, and appropriate formalisms for specifying properties
of MSC systems.

1 Introduction

Specifying the behavior of software systems is of major importance for engineers.
When concurrency is involved, the specification becomes even more challenging. Even
before considering the actual notation to be used for specification, there is a large
choice of models of execution. Different models vary in the detailed information they
carry, the intuition they provide and the difficulty of checking properties of the modeled
systems.

Perhaps the most successful model for describing concurrent systems is the inter-
leaving model. An interleaved execution is simply an alternating sequence of actions
and states, where each action is enabled in the preceding state, and after executing it,
results in a new state. In this model, all the events are linearly ordered, and concurrently
executed events are modeled by ordering them in an arbitrary way. Simple formalisms,
such as linear temporal logic, are available for describing properties of interleaving se-
quences. In the finite case, there are simple decision procedures for checking properties
of such models. The partial order model allows events to be unordered, if they can
independently (concurrently) occur. After the selection of the model, we are still left
with a wide choice of notation, affecting our level of abstraction and the complexity of
deciding their properties.

Message sequence charts (MSCs) is a partial-order based standard formalism [15].
It has a visual notation, which clearly demonstrates the interaction between the involved
concurrent processes. It is already used in practice by protocol designers, a fact which
gives it an advantage over other formalisms in technology transfer. On the other hand,
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working with an existing standard, which was developed by a committee, initially with-
out a full view of algorithms and complexity issues, can be challenging. In this sur-
vey we discuss several issues in specification and verification using message sequence
charts.

2 Preliminaries

Each MSC describes a scenario where some processes communicate with one another.
Such a scenario includes a description of the messages sent, messages received, the
local events, and the ordering between them. In the visual description of MSCs, each
process is represented as a vertical line with process name in a box at the top. We usually
end a process line with a horizontal line at the bottom. A message is represented by a
horizontal or slanted arrow from the sending process to the receiving one, as appears in
the left part of Figure 1. The corresponding textual representation of that MSC appears
in the right part of Figure 1.

d3

d2

d1

d4

d6

P3P2P1

d5

msc MSC;
inst P1: process Root,
P2: process Root,
P3: process Root;
instance P1;
out d1 to P2;
in d5 from P2;
in d6 from P3;
endinstance;
instance P2;
in d1 from P1;
out d2 to P3;
out d3 to P3;
in d4 from P3;
out d5 to P1;
endinstance;
instance P3;
in d2 from P2;
in d3 from P2;
out d4 to P2;
out d6 to P1;
endinstance;
endmsc;

Fig. 1. Visual and textual representation of an MSC

Definition 1. [15] An MSC M is given as a tuple 〈V,<, P,N , L,K,N,m〉, where

– V is a finite and nonempty set of events,
– < ⊆ V × V is an acyclic relation (with further details below),
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– P is a set of processes,
– N is a set of message names,
– L : V → P is a mapping that associates each event with a process,
– K : V → {s, r, l} is a mapping that describes the kind of each event as send,

receive or local, respectively,
– N : V → N maps every event to a name,
– m ⊆ V × V is a nonempty relation called matching that pairs up send and

receive events. Each send is paired up with exactly one receive. Events v1 and
v2 can be paired up with each other, only if N(v1) = N(v2), K(v1) = s and
K(v2) = r.

A type is a triple (i, j, C), including the indexes of the sending process Pi ∈ P and
receiving process Pj ∈ P , and a message name C ∈ N . Each send or receive event
has a type, according to the origin and destination of the message, and the label of the
message. The type of a local event of process Pi ∈ P is (i, i). Matching events have the
same type. A message consists of a pair of matched send and receive events. For two
events v1 and v2, we have v1 < v2 if and only if one of the following holds:

– v1 and v2 are matching send and receive events, respectively.
– v1 and v2 belong to the same process, with v1 appearing before v2 on the process

line.

We assume FIFO (first in first out) message passing, i.e., message arrows on the same
channel do not cross each other:

(m(v1, v
′
1) ∧m(v2, v

′
2) ∧ v1 < v2∧

L(v1) = L(v2) ∧ L(v′
1) = L(v′

2))⇒ v′
1 < v′

2

Denote by u −→ v the fact that u < v and either u and v are matching send and
receive events, or u and v belong to the same process and there is no event between u
and v on the same process line. We say in this case that u immediately precedes v.

Definition 2. The transitive closure <∗ of the relation < is a partial order called the
visual ordering of events. Clearly, the visual ordering can be defined equivalently as the
transitive closure of the relation −→. A chain of events e1 <∗ e2 . . . <∗ en is called a
causal chain.

The MSC notation represents a partial order execution, where the fact that two events u,
v are ordered according to the visual order means that u happens before v. A lineariza-
tion of an MSC M = 〈V,<,P,N , L,K,N,m〉 is a total order on V , which extends
the relation (V,<).

Example 1. Consider the example MSC given in Figure 1. For each message di, 1 ≤
i ≤ 6, denote by si the send event and by ri the receive event. Then we have V =
{s1, . . . , s6, r1, . . . , r6}, P = {P1, P2, P3}, N = {d1, . . . , d6} and N(si) = N(ri) =
di for each i. The events located on P1 are L−1(P1) = {s1, r5, r6}, with K(s1) = s,
K(r5) = K(r6) = r, and s1 < r5 < r6. This ordering is the time ordering of events
on P1. We also have m(si, ri) and si < ri for each i (message ordering). In particular,
s1 < r1 < s2 < r2.
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Fig. 2. The partial order between the events of the MSC in Figure 1

The partial order between the send and receive events of Figure 1 is shown in Fig-
ure 2. In this figure, only the ‘immediately precedes’ order −→ is shown. Notice for
example that the send events s5 and s6, of the two messages, d5 and d6, respectively,
are unordered.

Definition 3. The concatenation M1M2 of two MSCs,

Mk = 〈Vk, <k,P, Nk, Lk, Kk, Nk, mk〉, for k = 1, 2.

over a common set of processesP and disjoint sets of events V1∩V2 = ∅ (we can always
rename events so that the sets become disjoint) is defined as 〈V1 ∪ V2, <, P, N1 ∪
N2, L1 ∪ L2, K1 ∪K2, N1 ∪N2, m1 ∪m2〉, where

< = <1 ∪ <2 ∪{(u, v) ∈ V1 × V2 | L1(u) = L2(v)} .

That is, the events of M1 precede the events of M2 for each process, respectively.
If M = M1 M2, we say that M1 is a prefix of M , and denote this by M1 � M . This
also means containment between the different process events of the MSCs M1 and M .
Notice that no synchronization of the different processes is assumed in the definition
of concatenation. Thus, M1 M2 does not necessarily describe a behavior that starts
according to M1 and after completing all the events from M1 progresses to behave
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according to the events in M2. In particular, it is possible in M1 M2 that one process
is still involved in some actions of process Pi, while another process has advanced to
events from another process Pj . Such a situation is demonstrated later in this section.
The infinite concatenation of finite MSCs is defined in a similar way, and it allows
defining infinite MSCs as well.

Definition 4. Let M1, M2, . . . be an infinite sequence of finite MSCs. Define a se-
quence M1

′, M2
′, . . . as follows: Let M1

′ = M1, and for i > 1, Mi
′ = M ′

i−1Mi.
(Thus, for i < j, Mi

′ �Mj
′.)

Let M ′
i = 〈Vi, <i, P, Ni, Li, Ki, Ni, mi〉. Then, Vi ⊆ Vi+1, <i⊆<i+1, Ni ⊆

Ni+1, Li ⊆ Li+1, Ki ⊆ Ki+1, Ni ⊆ Ni+1 and mi ⊆ mi+1. The infinite concatenation
M1M2 . . . is defined as the infinite MSC M = 〈V,<,P, N , L, K, N, m〉 where V =
∪i≥1Vi, N = ∪i≥1Ni, L = ∪i≥1Li, N = ∪i≥1Ni, K = ∪i≥1Ki, N = ∪i≥1Ni,
m = ∪i≥1mi and <= ∪i≥1 <i. Each component defining M is thus the limit of the
partial unions for the same component in the finite prefixes M ′

i .

Since a communication system usually involves multiple (or even infinitely many)
MSC scenarios, a high-level description is needed for combining them. The standard
description consists of a graph called HMSC (high-level MSC), where each node con-
tains one finite MSC as in Figure 3. Each maximal path in this graph (i.e., a path that is
either infinite or ends with a node without outgoing edges) that starts from a designated
initial state corresponds to a single execution or scenario.

Definition 5. [15] An HMSC is a 4-tuple 〈S,M, c, τ,S0〉 where S is a finite set of
nodes, M is a set of finite MSCs with sets of events disjoint from one another. The
mapping c : S → M associates a node g ∈ S with an MSC c(g). By τ ⊆ S × S
we denote the edge relation. The initial nodes S0 are a subset of S. An execution of
the HMSC is a (finite or infinite) MSC c(g0) c(g1) c(g2) · · · associated with a maximal1

path g0, g1, . . . of the HMSC that starts with some initial node g0 ∈ S0.

The set of executions of an HMSC is also referred to as the set of MSC generated by
that HMSC. Figure 3 shows an example of an HMSC. The node in the upper left corner,
denoted M1, is the starting node, hence it has an incoming edge that is connected to no
other node. Initially, process P1 sends a message to P2, requesting a connection (e.g., to
an internet service), according to node M1. This can result in either an approval message
from P2, according to the node M2, or a failure message, according to node M3. In the
latter case, a report message is also sent from P2 to some supervisory process P3. There
are two progress choices, corresponding to the two arrows out of node M3. We can
decide to try and connect again, by choosing the arrow from M3 to M1, or to give up
and send a service request (from process P1 to process P3), by choosing to progress
according to the arrow from M3 to M4. Note how the HMSC description abstracts
away from internal process computation, and presents only the communications. The
executions of this system are either finite or infinite. Consider the path M1 M3 M4.
According to the HMSC semantics, process P2 in Figure 3 does not necessarily have

1 By maximality we mean that a path is either infinite, or terminates with a node that has no
successor according to the relation τ .
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Fig. 3. An HMSC graph

to send its Report message in M3 before the execution of process P1 has progressed
according to M4 sent its Req service message. However, process P3 must receive the
Report message before the Req service message.

According to the ITU standard [15], an HMSC can be hierarchical, i.e., an HMSC
node can be mapped into another (lower level) HMSC. We ignore this feature, which is
orthogonal to the discussion in this survey and refer to [9] for algorithms on hierarchical
HMSCs.

3 Expressiveness

Message sequence charts (MSCs) (including the extension to High level MSCs, i.e.,
HMSCs) is a formalism that is used in practice by protocol developers and software en-
gineers. Unlike some other specification formalisms, it was not designed by researchers
to fit into existing theory or tools. This calls for the study of its properties, in an attempt
to adapt some formal methods techniques, or develop new ones.

There are several interesting aspects of the MSC notation that pose a challenge to
the researchers and the developers of tools. For example, the HMSC notation does not
necessarily represents finite state systems, as there is no bound on the size of message
channels and due to concurrent processes. This fact has implications on the ability to
automatically verify properties of HMSCs. Consider for example the HMSC in Fig-
ure 4. This is the simplest example of an HMSC with infinitely many global states.
In order to formalize this observation, we define the notion of a global state of an
MSC.
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P1 P2

Fig. 4. Simple example with infinite state space

P1 P2

b
a

a
b

Fig. 5. An MSC with two messages

Definition 6. Let M = 〈V,<, P,N , L,K,N,m〉 be a finite or infinite MSC (the latter
case is obtained, e.g., by an infinite execution of an HMSC). A global state G is a finite
subset of the events of V , such that if f ∈ G and e <∗ f , then e ∈ G. (We say that G is
‘history closed’.)

Now, it is easy to see that the states of the unique and infinite execution of the
HMSC in Figure 4 consists of k sends and l receives for any natural numbers k ≥ l.
A global state of M is usually defined, in the context of software verification, as an
assignment function from the program variables to their values. In the MSC context,
the assignment can return the sequence of pending messages on each channel, together
with the last event on each process.

It is interesting to know what is the expressive power of HMSCs. In order to remain
within the domain of formal languages, we will look at the linearizations of MSC ex-
ecutions, i.e., their completions into total orders. We will label each event in an MSC
node with a label from a finite alphabet Σ. We allow (but do not force) labeling of
different events of the same type and kind by the same letter.

Consider the MSC in Figure 5. It has two messages, i.e., 4 events. We labeled the
sends with a, and the receives with b. This MSC generates two linearizations (words):
abab and aabb. These languages of linearizations are closed under certain permutation
of adjacent occurrences of events. We have three permutation rules:



50 A. Muscholl and D. Peled

1. If b is a receive of a message from Pi to Pj , and a is a send from Pi to Pj , then we
can permute σ1baσ2 (σ1, σ2 ∈ Σ∗) to obtain σ2abσ2. Note this rule does not nec-
essarily permit us to permute in the reverse direction, i.e., from σ1abσ2 to σ1baσ2.

2. If a is a send from Pi to Pj , and b is a receive from Pi to Pj , we can permute a
with b in σ1abσ2 provided that the following condition hold: #aσ1 > #bσ1, where
#cσ denotes the number of c’s appearing in the word σ.

3. If a and b belong to different processes, and their types do not match as in the
previous case, then we can permute a with b. (In fact, we can also permute b with
a, from the symmetry of this condition.)

The reason that reverse permutation of the first rule is not necessarily allowed is that it
may cause a receive to appear before the corresponding send. For example, given the
linearization abab of the MSC in Figure 5, we cannot permute the first a with the first
b to obtain baab. The second rule specifies the condition under which the reverse per-
mutation is allowed. Under this rule, the adjacent a and b, which can be permuted, are
not a matching pair. Also note that for MSCs, it is not possible to use a fixed symmetric
independence relation between events, as in trace theory [23].

We can define the language of an HMSC as follows. Let L(M) be the (finite) lan-
guage of an HMSC node M . Let K be the language of the graph of the HMSC, where
each node in the graph is assigned some unique letter (disjoint from the letters in Σ).
According to Kleene’s construction, the language K is a regular language. Substitute
in K each letter corresponding to a node M by the language of L(M). This is still a
regular language, denoted K̃. Now close K̃ under the permutation rules to obtain [K̃].
Such permutations are achieved by using context sensitive grammar rules of the form
XabY → XbaY . Hence the language [K̃] of an HMSC is context sensitive. Note that
the language of an HMSC H is the set of all linearizations of executions of H . Note
also that we can only permute events according to the first and third permutation rules
given above. This is sufficient due to the fact that we took all the linearizations of each
separate MSC node. This is because a send event a from Pi to Pj in a node g and a
receive event b, also from Pi to Pj of a later node h can never be commuted; the event
a necessarily precedes the send event that matches with the receive b.

P1 P2 P3

b

d
c

a

Fig. 6. An MSC with context-free behavior
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Fig. 7. A simple two process protocol

Thus, HMSC languages are obtainable from regular languages (ω-regular in the case
of infinite executions) by closing under a given set of permutations. To show that the
language of HMSCs is, in general, not regular or context free, consider the example in
Figure 6. The global states of this example have l times a events, m times c events, and
n times d events, where l ≥ m ≥ n (also the number of b events is the same or greater
than, by exactly one, than the number of c events). This can be easily shown not to be
in the class of context-free (and not regular) languages.

On the other hand, we show that the HMSC notation does not allow representing
all the possible communication skeletons of finite state communication protocols [11].
This makes HMSCs incomparable with regular languages.

As an example, consider the infinite MSC that is generated from the simple pro-
tocol in Figure 7. A finite prefix of the MSC description of the (unique and infinite)
execution of this protocol appears in Figure 8. We show that this infinite MSC cannot
be decomposed into a concatenation of finite MSCs. We start with the send event e1 and
receive event f1. Obviously, because of the compulsory matching between correspond-
ing send and receive events in HMSCs, they must belong to the same MSC node. We
have the send event g1 preceding f1, on the same process line, while its corresponding
receive event h1 succeeds the send e1. Thus, the events g1 and h1 cannot be in an MSC
preceding the one containing the events e1 and f1, nor it can be in an MSC succeed-
ing it. Consequently, these four events must be in the same HMSC node. For the same
reason, we have that e2 and f2 must belong to the same node with g1, and h1, and so
forth.

The problem lies within the restriction of the MSC nodes to contain matched mes-
sages. A different view of the expressiveness problem is that any global state that cor-
responds to a finite path in an HMSC (i.e., a global state that contains complete MSC
nodes) has a matched set of send and receive events. In the partial order execution in
Figure 8, there is no global state with this property. Hence, we cannot decompose this
execution into finite MSCs (which will occur infinitely many times along some path of
an HMSC).



52 A. Muscholl and D. Peled

g2

e2

g1

e1

f1

e3

e4

h1

g3

f3

f2

h2

P2P1

Fig. 8. A prefix of an MSC execution that cannot be decomposed

3.1 Compositional MSC

An extension of the HMSC notation is described in [11]. It allows MSC nodes with
unmatched send and receive events. Thus, a send event in one node may be matched
with a receive event in a later node.

In order to represent communication protocols, whose description could only be
approximated using standard MSCs, we suggest an extension of the MSC standard. In-
tuitively, a compositional MSC, or CMSC, may include send events that are not matched
by corresponding receive events and vice versa. An HCMSC is a graph whose nodes
are CMSCs. An unmatched send event in one node in a path may be matched in future
HCMSC nodes on that path. Similarly, an unmatched receive event may be matched in
previous HCMSC nodes. The definition of a CMSC is hence similar to an MSC, except
that unmatched send and receive messages are allowed.

Definition 7. [11] A CMSC M is defined as in Definition 1, except for the following
modification:

m ⊆ V × V is a partial function called matching that pairs up send and
receive events. Each send event is paired up with at most one receive event and
vice versa. Events that are paired up are called matched, otherwise, they are
unmatched. Matching events must have the same type.

Unmatched send events are supposed to be matched by receive events belonging
to subsequent nodes, whereas unmatched receive events are supposed to be matched
by send events belonging to preceding nodes. The above definition allows unmatched
receive events that do not correspond to any unmatched send event. (Allowing un-
matched send events that do not correspond to a later receive is a lesser problem, as
this can actually happen in communication protocols.)
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P1 P2

P1 P2

Fig. 9. A decomposition of the execution in Figure 8

We denote an unmatched send by a message arrow, where the receive end (the target
of the arrow) appears within an empty circle. Similarly, an unmatched receive is denoted
by an arrow where the send part (the source of the arrow) appears within a circle. CMSC
arrows where both the send and the receive events are unmatched events are forbidden.
In Figure 9, we can see an HCMSC that represents the execution that is approximated
in Figure 8.

Definition 8. A CMSC is called left-closed, if it does not contain unmatched receive
events, or any unmatched send event that precedes another matched send of the same
type (the latter condition excludes send events that could never be matched without
violating the FIFO order).

Definition 9. Consider two CMSCs M1 = 〈V1, <1, P , N1, L1, K1, N1, m1〉 and
M2 = 〈V2, <2,P, N2, L2, K2, N2, m2〉 over disjoint events sets. Define the matching
function m′ that pairs up unmatched send events of M1 with unmatched receive events
of M2 according to their order on their process lines. That is, the ith unmatched send in
M1 is paired up with the ith unmatched receive event of the same type in M2.

The concatenation M1M2 is then defined as 〈V1∪V2, <,P, N1∪N2, L1∪L2, K1∪
K2, N1 ∪N2, m1 ∪m2 ∪m′〉, where

< = <1 ∪ <2 ∪
{(v1, v2) ∈ V1 × V2 | L1(v1) = L2(v2)} ∪m′
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provided that M1 M2 is a CMSC satisfying the FIFO property when restricting the
events to the matched pairs of events.

Clearly, the concatenation of CMSCs is not associative anymore. Hence, when we
write M1 · · ·Mk we mean the concatenation (· · · (M1M2)M3) · · ·Mk). Again, we can
define the prefix relation M1 � M if there exists M2 such that M1 M2 = M . The
definition of an infinite concatenation for CMSCs follows the lines of Definition 4. Note
that in an infinite concatenation, there can be infinitely many unmatched messages sent
from one process to another.

The formal definition of HCMSCs is the same as Definition 5. Similarly, an HCMSC
execution is the CMSC c(g0)c(g1) . . . associated with a path g0, g1, . . . in the HCMSC
graph, starting with some initial node g0, as in Definition 5.

3.2 Safe HCMSC

The definition of HCMSCs allows obtaining some “unreasonable” paths in HCMSCs,
e.g. in which at some points there are more receive events than the corresponding
send events for some ordered pair of processes. It is not clear how to treat such paths.
One way, is to disregard such paths as executions of the HCMSC system. Another ap-
proach, which will be taken in this section, is to forbid HCMSCs with such paths.

Remark 1. [15] An HCMSC is safe2 if the execution of every finite path starting with
the initial state is a left-closed CMSC.

Note that we explicitly allow executions with unmatched send events. The HCMSC
of Figure 9 is such that every finite execution is a left-closed CMSC with unmatched
send events. However, the unique maximal execution corresponds to an infinite MSC,
where all the events are pairwise matched. Definition 8 of left-closedness guarantees
that no unmatched send can prevent the system to satisfy the FIFO condition by match-
ing it later.

We will show how to test whether an HCMSC is safe. From the definition of safe
HCMSCs, we can focus on messages sent from each Pi to another process Pj sepa-
rately. There are three situations that violate the safety of a HCMSC on a given prefix
of a path:

1. There are more unmatched receive events than sends.
2. Reaching a matched send-receive pair, the kth unmatched send is before the matched

pair, but the kth unmatched receive comes after that matched pair. This will gener-
ate a non-FIFO behavior.

3. The kth unmatched send has a message name C, while the kth unmatched receive
has a message name D, where D �= C.

To check whether an HCMSC is safe [11], we construct a nondeterministic push-
down automaton Si,j for each ordered pair of processes Pi, Pj that exchange messages
in the HCMSC. A pushdown automaton is a quadruple, S = 〈Q,Γ,Σ,Δ〉, such that

2 Such HCMSCs are called realizable in [11]. This name usually refers to the realizabil-
ity/implementability problem, so we prefer to recast it into “safe”.
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– Q is a finite set of control states,
– Γ is a finite stack alphabet which in our case will be Γ = {⊥, 1}, where ⊥ is the

‘stack bottom’ symbol,
– Σ is the input alphabet, which includes unmatched-send C, unmatched-receive C,

or matched-C, such that C is a message name from N , and Δ ⊆ (Q×Σ × Γ )×
(Q × {pop, push, skip}) is the set of transition rules. Depending on the current
state and symbol at the top position at the stack and the current input symbol, a
pushdown automaton has a choice of
• the next state and
• whether to pop the current top element from the stack, push another symbol on

top of it, or skip, i.e., keep its current contents. The stack contents in our case
always belongs to ⊥1∗.

The stack is used as a counter, where the counter value is the number of ‘1’ symbols
on the stack, and a zero is represented by a stack containing only ‘⊥’. We can partition
the transitions according to their effect on the number of ‘1’ symbols in the stack:
incrementing, decrementing, or testing whether the contents of the stack is zero.

For every pair of processes Pi, Pj we define the pushdown automaton Si,j by re-
placing each node in the HCMSC by a linearization (total ordering) of the matched and
unmatched send and receive events. We allow only linearizations in which unmatched
receive events of some type precede all the unmatched send events of the same type.
It follows easily from the definitions that such a linearization always exists. The au-
tomaton Si,j will follow such events in a node, and then will continue according to the
events of a successor of the current node and so forth (nondeterministically, as there can
be more than one HCMSC successor). The pushdown automaton will reach an accept
state exactly when it discovers that the HCMSC is not safe due to communications from
Pi to Pj .

We describe now the automaton Si,j informally. It contains two phases. In the first
phase, it increments each time an unmatched send event occurs, and decrements each
time an unmatched receive occurs. It moves to an accept state when either the stack is
empty (containing only ⊥), and an unmatched receive occurs, or when a matched send-
receive event occurs and the stack is not empty. This takes care of the cases 1 and 2
above. To take care of case 3, upon the occurrence of an unmatched send, the automaton
can nondeterministically ‘guess’ that the corresponding receive has a different name.
It saves the message name C in its finite control and ignores all subsequent events,
except for unmatched receive events, where it decrements one ‘1’ from the stack. Upon
reaching an empty stack, it compares the last receive name D with the name stored C.
If C �= D, it transfers to an accept state, and otherwise, it just ignores the rest of the
events. Reaching an accept state means that the HCMSC is not safe.

The motivation behind the definition of compositional MSCs was to capture finite
state communication protocols, like the one of Figure 8:

Theorem 1. [11] Every finite state communication protocol can be transformed into
an equivalent safe HCMSC (in polynomial size).

Clearly, the converse of the theorem above does not hold. This happens for the same
reasons as for HMSCs, as demonstrated in Figure 6.
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4 Undecidable Versions of Model Checking for HMSCs

Once we characterize HMSC languages as context sensitive languages, it is not too
surprising that certain decision problems become undecidable. The state based model
checking (see e.g. [14, 19, 30, 7]) prescribes using a finite state model for representing
the execution sequences of a system and another finite state automaton (over finite or
infinite words) for representing the specification. The specification describes the bad
executions, i.e., the ones we do not want the system to have. We take the intersection of
the languages of the system automaton and the specification automaton to find whether
there are bad sequences allowed by the system.We can try, along these lines, to specify
the bad or unwanted executions of a system using the HMSC formalism. If the inter-
section of the linearizations of two HMSCs is nonempty, we can easily take one and
generate back an MSC.

Alternatively, we can use a specification of the good sequences, i.e., the executions
we allow. However, in this case we need to perform a test for language inclusion, which
is often of higher complexity when using HMSCs. The reason is that contrary to logi-
cal specifications, that can be negated without any blow-up, HMSCs cannot be always
complemented. As an example, consider the trivial HMSC with one node labeled by the
empty MSC over the process set P . This HMSC generates the empty set and its com-
plement (i.e., the set of all MSCs over P) cannot be generated by an HMSC (neither by
a safe CHMSC).

The corresponding HMSC model checking problem is to intersect two HMSCs,
one corresponding to the system description, and another representing the ‘bad’ MSC
executions. It is known that the emptiness of the intersection of two context sensitive
languages is undecidable. We still have to prove that for HMSC languages, as they form
a subset of the context sensitive languages:

Theorem 2. [27] The problems of intersection of two HMSCs is undecidable.

Proof. By reduction from Post Correspondence Problem (PCP). The input for PCP is a
finite sequence of pairs of words

(w1, v1), (w2, v2), . . . , (wn, vn)

The problem is to decide whether there is a finite sequence of indexes i1, i2, . . . , im
such that wi1wi2 . . . wim

= vi1vi2 . . . vim
.

We construct two HMSCs. One for concatenating words that appear in the left
components of the above pairs, and one for concatenating words that appear in the
right components. Consider the HMSC for the left components. We have 4 processes
P1, . . . P4. For each word wj , we construct an MSC node Mj with messages from P1

to P2 labeled by the letters of wj . We also have a node Rj , with one message, from P3

to P4, labeled by the index j. We also have an initial node E, with a message from P1

to P4, and a node F , with a message from P4 to P1. The structure of the automaton can
be represented by the regular expression E(

∑
j=1..n MjRj)+F , which is also demon-

strated in Figure 10. That is, we need to start with the initial node E, then repeatedly
make a nondeterministic choice of MjRj for 1 ≤ j ≤ n, and finally end with node F .

The automaton for concatenating the right components is constructed similarly. Now
notice that the events in the Mj components can commute with the events in the Rj
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Fig. 10. An HMSC graph for the PCP reduction

components, since they involve disjoint processes. Therefore, any word in the intersec-
tion has the same characters according to the sequence of Mjs, and the same indexes
according to the sequence of Rjs.

Another attempt for providing model checking is to write the specification (or the
negation of the specification, describing the bad executions) using an automaton over
finite or infinite words, or using linear temporal logic (LTL). Unfortunately, the inter-
section of HMSC languages with regular languages, or the language of words satisfying
linear temporal logic formulas, is undecidable as well.

To see this, replace in the previous proof the HMSC for the right components (the
‘specification automaton’) by an LTL formula (or regular expression, or a finite state
automaton over infinite words) that represents some of the linearizations of the HMSC
as follows: for an MSC node M , let lin(M) be the single linearization of M that in-
cludes matching send and receive events appearing adjacent. (Note that this kind of
linearization is not always possible for an MSC, but is possible in our case because of
the particular construction of the nodes in the reduction.) Thus the linearization of Mj ,
representing the word wj = αββα will be sαrαsβrβsβrβsαrα, where sρ represents a
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send of a message labeled by ρ, and rρ represents a receive of that message. The LTL
formula will represent the language lin(E)(

⋃
j=1..n lin(Mj)lin(Rj))+lin(F ) (this is a

counter-free language, and thus can be represented using LTL).
The intersection of the (language of the) HMSC, representing the left words in the

PCP problem, and the language of the LTL formula above, representing the right words,
would include exactly the words that are solutions to the PCP problem. That is, we have
the same concatenation of words, with the same sequence of indexes. Hence, LTL model
checking of HMSCs is undecidable.

5 Decidable Versions of Model Checking for HMSCs

There are several positive solutions for providing model checking algorithms for HM-
SCs. One possibility is to consider restricted classes of HMSCs. The most restrictive
approach considers regular HMSCs, that correspond to finite state systems for which
the usual model checking approaches can be used. Other solutions are listed below.

5.1 Regular and Cooperative HMSCs

A constraint for HMSCs ensuring regularity is the following [5, 26].

Definition 10. The communication graph CGM = 〈P,→〉 of an MSC M contains the
processes P ∈ P of M that occur in M , and with edges Pi → Pj ∈ E if there is a
message from Pi to Pj in M .

Definition 11. [5, 26] An HMSC H is regular, if for each loop σ in the graph of H , the
communication graph CGM of the MSC M labeling σ is strongly connected.

The definition of regular HMSCs is syntactic, and be checked in co-NP [26, 5].
Model checking becomes decidable for regular HMSCs [26, 5], since their languages
are regular. More precisely:

Theorem 3. [17, 18] A set of MSCs is generated by a regular HMSC if and only if it
has a regular set of linearizations and is generated by a finite set of MSCs.

An HMSC state is a global state associated with an execution M of the HMSC H .
We will show that the number of pending messages (i.e., messages that are sent but
not yet received) in any HMSC state of a regular HMSC is finite. Note however that
a bound on pending messages does not suffice for representing HMSC linearizations
using a finite state automaton. As an example, consider a (non-regular) HMSC over
processes P1, P2, P3, P4 consisting of two nodes g0, g1. The initial node g0 has a self-
loop and a transition to the sink node g1. Node g0 is labeled by the following MSC with
4 messages: there is a message from P1 to P2, and back, and a message from P3 to P4,
and back. Node g1 is labeled by the empty MSC. Now, the number of pending messages
is at most 2, but the set of linearizations is not regular.

Theorem 4. For any regular HMSC there is a bound on the number of pending mes-
sages in any HMSC state.
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Proof. It is sufficient to show that for each pair of processes P and Q, there is a bound
on the number of occurrences of a regular HMSC node g that can contribute to the
pending messages.

Let n = |P|, i.e., the number of processes. An upper limit on the number of graphs
with n nodes, and also on the number of simple paths in such a graph is k = 2n2

.
Consider a global state G generated for a maximal path (i.e., a finite MSC) σ. Consider
the occurrences of unreceived send events from process P to process Q on σ in G. Let
g be a node of the HMSC that includes such an event. Assume for the contradiction that
there are l = nk + 3 such occurrences g0, g1, . . ., gnk+2, of g that contribute to the
global state G.

There are nk cycles, gi to gi+1 for 1 ≤ i ≤ nk + 1, after the first occurrence g0

of g and before the last occurrence gnk+2. Each such cycle σi is a subpath of σ. By the
choice of l, considering the communication graphs corresponding to the cycles σi, at
least one such graph repeats n times. Let μ be a simple path in such a communication
graph from the node corresponding to process Q to the node corresponding to process
P . Hence μ consists of at most n− 1 edges.

Distinguish s and r as a send–receive pair of g0, from process P to process Q, where
s is in G but r is not. Similarly, let s′ and r′ be a similar pair of gnk+2. We can now
construct a causal (according to <∗) chain of events in the subpath of σ as follows:
from the σi cycle we select a send–receive pair according to the ith edge of μ. (We may
not assume that a chain of events appears according to the order in μ in one cycle σi,
hence we need to form the chain by collecting events from different cycles.) This forms
a causal chain of events, as each receive selected precedes the following send on the
same process line. The first send on this chain appears later than the event r. It appears
in g1 and both belong to process Q. The last receive precedes the event s′. Both events
belong to process P . According to our assumptions, r is not included in G while s′ is
included. Thus by our construction, r <∗ s′. This is a contradiction, since a global state
must be history closed.

This result is also related to the star problem in trace languages [28]. The restriction
to regular HMSCs is quite strong, for instance the simple protocol in Figure 4 is not
regular. However, this HMSC is globally-cooperative, and belongs to a large subclass
of HMSCs with a decidable model-checking problem.

Definition 12. [13] An HMSC H is globally-cooperative, if for each loop σ in the
graph of H , the communication graph CGM of the MSC M labeling ρ is weakly con-
nected.

It is interesting to note that regular HMSCs are precisely globally-cooperative HM-
SCs that use only bounded channels.

Model-checking globally-cooperative HMSCs is decidable, and has the same com-
plexity as for regular HMSC [13]. Instead of having a regular set of linearizations,
globally-cooperative HMSCs have a regular set of representative linearizations, which
suffice for doing model-checking operations.

Theorem 5. [13] Checking intersection of two globally-cooperative (regular, resp.)
HMSCs is PSPACE-complete. Checking inclusion of two globally-cooperative (regu-
lar, resp.) HMSCs is EXPSPACE-complete.
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Allowing ‘gaps’ in the semantics of the specification HMSC gives another decid-
able case for model checking. A specification HMSC representing the bad executions
is interpreted in a different way than the HMSC representing the system. The former
represents only part of the events. In particular, two adjacent events a and b on the
same process line of the specification HMSC may match some nonadjacent events of
the same type in the system HMSC. The (scattered) pattern matching problem between
these two HMSCs is decidable, and is in NP-hard, in the size of the HMSCs [27].

5.2 The Logic TLC−

Using a partial order based specification formalism can also regain decidability of
model checking. Consider a specification that has a language L that is regular and is
already closed under the permutation rules. The emptiness of the intersection of such
a specification with an HMSC language can be decided. The reason is that an HMSC
language [P ] is generated from a regular language P by closing it under permutations.
If L = [L], then L∩P �= ∅ iff L∩ [P ] �= ∅. Thus, it is sufficient to check the emptiness
of the intersection of L with the regular generator P of the HMSC language. Similarly,
for the inclusion problem we have P ⊆ L iff [P ] ⊆ L and this can be decided, provided
that the specification L is complementable3.

A solution that involves partial order based formalisms is the use of a subset of
the logic TLC [4], as applied on HMSCs in [29]. According to this solution, we use
temporal modalities to reason over the events of the MSC system. We use the same
modalities symbols as in LTL, but give them a different interpretation; over paths of
events, generated by the < relation, rather than over linearizations of the partial
order.

The logic TLC− is a subset of the logic TLC [4]. A model of the logic is a finite or
infinite partial order ζ = (V,<,−→), where <⊂ V × V is a partial order relation, and
−→⊂< is the ‘immediately precedes’ relation. The set of formulas L of TLC− over a
set of atomic formulas AP is as follows: true, false ∈ L, if p ∈ AP , then p ∈ L, and if
ϕ, ψ are in L then ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ∃© ϕ, ∀© ϕ, ϕUψ, ϕRψ ∈ L.

An interpretation function I : V → 2AP assigns to each event of V a set of propo-
sitions from AP . Each proposition in AP represents some property (e.g., of an event,
or the local state before or after the event, when the events are taken from some sys-
tem execution). Then, I(v) returns the set of atomic propositions that hold for v. The
semantics of the logic is defined as follows.

(ζ, v) |= true.
(ζ, v) |= p if p ∈ I(v)
(ζ, v) |= ϕ ∧ ψ if (ζ, v) |= ϕ and (ζ, v) |= ψ.
(ζ, v) |= ¬ϕ if it is not the case that (ζ, v) |= ϕ.
(ζ, v) |= ∃© ϕ if for some w such that v−→w, it holds that (ζ, w) |= ϕ.
(ζ, v) |= ϕUψ if there is a path v = v0 −→ v1 −→ . . . −→ vn, such that (ζ, vn) |= ψ,

and for 0 ≤ i < n, (ζ, vi) |= ϕ.

3 As in the case of logics, as described next. Note however that HMSCs cannot be comple-
mented.
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We define false ≡ ¬true, ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ϕRψ ≡ ¬(¬ϕU¬ψ), ∀ © ϕ ≡
¬∃©¬ϕ. Two additional modalities, ♦ and �, can be defined in terms of the previous
ones: ♦ϕ ≡ trueUϕ, and �ϕ ≡ falseRϕ. For TLC− we have selected an existential
until ‘U ’ operator, hence its dual release ‘R’ operator is universal. The full logic TLC
contains also a universal until, an existential release, and a concurrent with operator ‘||’.
The modalities U and R satisfy the following equations: ϕUψ ≡ ψ ∨ (ϕ∧ ∃©ϕUψ),
ϕRψ ≡ ψ ∧ (ϕ ∨ ∀ © ϕRψ). A TLC− formula ϕ can then be interpreted over an
HMSC execution M , treated as a partially ordered set of events. We can denote M |= ϕ
when M satisfies ϕ. Like in the case of LTL, where satisfaction is extended from a
single execution to the collection of executions of a system [25], we can extend TLC−

satisfiability and define H |= ϕ for an HMSC H when M |= ϕ for each execution M
of H .

Thus, the assertion©ϕ holds for events that have an immediate successor under the
relation < for which ϕ holds. ♦ϕ holds for events e from which there is a path according
to <, leading to some event f for which ϕ holds (thus, e <∗ f). Similarly, for ψUϕ
to hold for e, we require, that ψ holds for each event along such a path from e to some
event f where ϕ holds. Finally, in order to satisfy the usual duality �ϕ = ¬♦¬ϕ, we
interpret �ϕ as follows: it holds for events e that satisfy that for every event f such that
e <∗ f , ϕ holds for f .

Some examples for TLC− specification are as follows:

�(req → ♦ack) Every request is causally followed by an acknowledgement.
�(recA→ ∃© sendB) A message B is sent immediately after receiving a message

A.
¬♦(tranA∧♦(tranB ∧♦tranA)) Transaction B cannot interfere with the events of

transaction A.
�(beginA → ∃© (tranAUfinishA)) The execution of transaction A is not inter-

rupted by any other event.

One intuition behind the decidability (and model checking algorithm) of TLC− over
HMSC is that although HMSC linearizations are not regular languages, they are ‘al-
most regular’, up to some commutations, as shown in Section 3. The TLC− logic does
not distinguish between linearizations that are equivalent up to such commutations. A
TLC− formula can thus be equally be interpreted over a regular subset of representa-
tives linearizations. More precisely, for the permutation rules the situation is actually a
little bit subtler than in Section 3. The reason is that from a TLC− formula we cannot
get the set of all linearizations of its MSC models, since this would involve counting
of pending messages. We can compute instead the set of all linearizations where is the
number of pending messages is bounded. The bound can be provided by the HMSC that
is model-checked. Another decidable model checking solution with the same flavor is
based on using second order monadic logic over partial orders [22].

6 Other Decision Problems

A natural problem that arises with MSCs is whether the MSCs contain race conditions.
A race condition can result from the fact that we have only a limited control on the



62 A. Muscholl and D. Peled

P1 P2

P1 P2

P1 P2

M1

M2 M3

Fig. 11. A non-local choice

order between pairs of events that include at least one receive event (except for two
receives corresponding to messages sent from the same process, according to the FIFO
semantics). For example, the MSC in Figure 1 contains two receive events of process P1

(of messages d5 and d6). Since each process line is one dimensional, the MSC notation
forces choosing one of the receive events to appear above the other. However, these two
messages were sent from different processes, P2 and P3, and it might happen that d6

arrives quicker than d5. Thus, there is no reason to trust that these messages will arrive
in the particular order depicted using the MSC.

Formally, we can define a race condition for pairs of MSC receive events p, q ∈ V
for messages sent from different processes such that L(p) = L(q), i.e., p and q appear
on the same process line. A race occurs if p < q, i.e., p appears above q on the process
line, and it is not the case that p <∗ q, i.e., there is no path from p to q according to the
relation <. Detecting races in an MSC is thus simple. All we need is to calculate the
transitive closure <∗ and compare it against relation <.

It is shown in [3] that the calculation of the transitive closure <∗ of < is quadratic
in the number of events, and not cubic as is the general case for transitive closure. This
stem from the fact that the number of immediate successors of each event p under <
(i.e., events q such that p < q, and there is no r such that p < r < q) if limited to 2.

We can define the race conditions for HMSCs. This turns out to be an undecid-
able problem [27]. We regain decidability by limiting the structure of the HMSCs, as
described in Section 5.

Another problem related to HMSC specification is that of non-local branching
choice [6, 26]. A problem potentially arises when different processes behave accord-
ing to different choices in the HMSC graph, resulting in a behavior that is not following
any of the branching choices.
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Consider the example in Figure 11. After Process P1 sends a message to Process
P2 in M1 it may proceed according to M2 and send another message to P2. However,
the HMSC allows also the possibility that after receiving the message in M1, P2 would
send some acknowledge message, according to the node M3. If P1 proceeds according
to M2 and P2 proceeds according to M3, we obtain a behavior that is not consistent
with any path of the HMSC.

The definition of non-local branching choice is difficult because it is not clear what
would constitute a problematic behavior. In the above example, it is possible that P1

initially decides on the choice, and lets P2 know about it through the message that
is sends in M1. On the other hand, it could be argued that in that case, we should
have split M1 into two nodes, according to the branch into M2 and M3. One solu-
tion is to try and detect whether some non-local choice occurs, while another is to
restrict the HMSCs so that they would not allow such a choice [6, 26]. In the first case
consider local-choice HMSCs, i.e., HMSCs that do not have any non-local branching
choice. Such specifications are very interesting, since they can be implemented with-
out deadlock by CFMs [13] with additional control data. Although local-choice is a
syntactic property, it can be decided whether an HMSC is equivalent to a local-choice
HMSC [10].

The problem of implementing HMSCs by CFM has deserved a lot of attention in
past years, since it represents an important validation step when using HMSC speci-
fications. The implementation notion used in [1] assumes that the CFM does not use
additional data or messages compared to the HMSC. Unfortunately, this notion is not
decidable in general, even for regular HMSCs [2], or very expensive if we ask for
deadlock-free implementations [21]. The paper [16] shows that local-choice HMSCs
cannot be implemented without deadlock if no control (message) data is allowed. For
regular HMSCs [24] and globally-cooperative HMSCs [13] implementations with ad-
ditional (bounded) control data have been proposed.
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Abstract. Based on a concise domain analysis we develop a formal
semantics of security protocols. Its main virtue is that it is a generic
model, in the sense that it is parameterized over e.g. the intruder model.
Further characteristics of the model are a straightforward handling of
parallel execution of multiple protocols, locality of security claims, the
binding of local constants to role instances, and explicitly defined ini-
tial intruder knowledge. We validate our framework by analysing the
Needham-Schroeder-Lowe protocol.

1 Introduction

Security protocols are often expressed in the form of a diagram displaying the
interactions between the principals, such as a Message Sequence Chart. The MSC
in Figure 1 describes perhaps the most well-known example of a flawed security
protocol. We will explain the details in Section 4. The protocol was developed in
1978 by Roger Needham and Michael Schroeder [1] and proven correct with BAN
logic [2] in 1989. In 1995 Gavin Lowe found an attack on the protocol [3], because
he assumed a more powerful intruder model, allowing agents to conspire with
the intruder. This so-called man-in-the-middle attack is displayed in Figure 2.
Currently, this situation is explained by pointing at a shift of the assumptions
on the environment of the system: from a trusted local network that should be
protected against external threats to a network with internal attackers.

This example clearly shows that a theory of security protocols should be flex-
ible enough to vary over the parameters that determine the problem, such as the
intruder model. Looking at Figure 1 it is clear that this informal protocol speci-
fication states nothing about the precise intruder model assumed. In fact, more
information is lacking. Information which is needed to precisely understand the
meaning of this diagram. How does an agent check, for instance, if an incoming
message satisfies the expected message format? If we assume that he will not
check the types of the messages, yet another attack will become viable, which is
called a type-flaw attack.

It is our goal to give an unambiguous and generic description of the inter-
pretation of such security protocols and what it means for a protocol to ensure
some security property. Although the security protocol takes the shape of a Mes-
sage Sequence Chart, there is so much additional structure in the problem that
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〈SKi, PKi〉, PKr

i

〈SKr, PKr〉, PKi

r

nonce ni

{i, ni}PKr

nonce nr

{ni, nr}PKi

{nr}PKr

i and r are communicating
i and r share secrets ni and nr

msc Needham-Schroeder

Fig. 1. The Needham-Schroeder public key authentication protocol. (The full notation

will be explained in Section 4)

we cannot rely on the MSC semantics to provide an answer. Therefore, we will
define a formal semantics of security protocols.

Our first step to come to a formal semantics is to conduct a concise domain
analysis (loosely following [4]). The purpose of this step is to informally sketch
the issues that make up the problem space and its boundaries. We will identify
the points of variation and decide whether these are considered as parameters
of the problem or that design decisions have to be made. In this process we are
guided by the following starting points. First of all, the formal model must be
generic (e.g. over the intruder model). Second, the formal model should offer
a framework to verify security protocols, both manually and with computer
support. Third, the formal model should be easily extendable with additional
features (such as forward secrecy) to make it applicable to a wide range of
problems. Finally, the formal model should enable the development of meta-
theory (e.g. compositionality properties of security protocols). We have chosen
to define an operational semantics based on state transitions.

The rest of this paper is structured as follows. In Section 2 we will conduct
a short domain analysis and introduce the basic concepts. Section 3 describes
an operational semantics of security protocols, based on the domain analysis.
We will validate our semantical approach by formally analysing the Needham-
Schroeder protocol in Section 4. In Section 5 we discuss the relation between our
approach and other published models and in Section 6 we will summarise our
results and provide an outlook on future research.
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〈SKa, PKa〉, PKe

a : i(a, e)

Intruder

(e) (a)

〈SKb, PKb〉, PKa

b : r(a, b)

nonce na

{a, na}PKe

{a, na}PKb

nonce nb

{na, nb}PKa

{na, nb}PKa

{nb}PKe

{nb}PKb

“I am talking to a”knows nb

msc Man-in-the-middle attack

Fig. 2. Man-in-the-middle attack on the Needham-Schroeder protocol

2 Security Protocols: A Domain Analysis

Rather than starting right away with the development of a formal semantics we
first conduct a concise domain analysis. The purpose of this analysis is to make
some of the design decisions explicit and to decompose the problem into smaller
parts.

We start with the following informal description of involved concepts. A se-
curity protocol describes a number of behaviours. Each such behaviour we will
call a role. We have, for instance, the initiator role and the responder role in a
protocol. A system consists of a number of communicating agents. Each agent
performs one or more roles (possibly from several security protocols). A role
performed by an agent is called a run. For instance, agent a can perform two
initiator runs and one responder run in parallel. The agents execute their runs to
achieve some security goal (e.g. the confidential exchange of a message). While
agents pursue their goals, an intruder may try to oppose them. The capabili-
ties of the intruder determine its strength in attacking a protocol run. However,
threats do not only come from the outside. Agents partaking in a protocol run
may also conspire with the intruder and try to invalidate the security goals. In
order to resist attacks, an agent can make use of cryptographic primitives when
constructing messages.
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Given this global description, we can identify the following components of
the security protocol model.

Protocol specification
Agent model
Communication model
Threat model
Cryptographic primitives
Security requirements

We will discuss each of these sub-models, list their points of variation and make
appropriate design decisions. Of course, every subdivision of the problem is arti-
ficial, but we found that this approach helped in adding structure and restricting
the problem space. The sub models mentioned are not independent entities. For
instance, the protocol specification makes use of the provided cryptographic
primitives and the communication model is connected to the intruder model if
the intruder has complete control over the network.

Protocol Specification. The protocol specification describes the behaviour of each
of the roles in the protocol. We consider this as a parameter of our semantics.
We define an (abstract) syntax to specify a security protocol. Most often, a role
in a security protocol is specified as a sequential list of events. In practise, a secu-
rity enhanced communication protocol requires a more expressive specification
language, but for an abstract description of e.g. an authentication protocol a se-
quential list will suffice. The set of events usually contains send and read events.
Furthermore, we will consider security claims as special events. Timers (and all
time related information) are not included in our model. A protocol specification
is not complete without a specification of the initial knowledge required to ex-
ecute a role and the declaration of functions, constants and variables occurring
in the protocol specification. The protocol specification is expressed in a formal
language for which we will define an abstract syntax and static requirements.

Agent Model. Agents execute the roles of the protocol. The agent model is based
on a closed world assumption. By this we mean that honest agents show no be-
haviour other than the behaviour described in the protocol specification. Thus,
unless specified explicitly in the protocol, an honest agent will never leak classi-
fied information. The closed world assumption does not imply that an agent will
only execute one run of the protocol. We assume that an agent may execute any
number of runs in parallel (in an interleaved manner). Although restrictions on
the number (and type) of runs may be of interest in practical applications, we
will not parameterise over this property. The agent model also describes how an
agent interprets a role description. An agent executes its role description sequen-
tially, waiting at read events until an expected input message becomes available.
This implies that an agent ignores unanticipated messages. More specifically, an
incoming message will be matched against the expected message format as de-
scribed in the protocol specification. Our semantics will be parameterized over
this matching function, e.g. to allow for detection of type-flaw attacks.
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Communication Model. The communication model describes how the messages
between the agents are exchanged. We have chosen the model of asynchronous
communication. This model is more general than the synchronous communica-
tion model. Thus, if a security protocol is proven correct in the asynchronous
model it will also be correct in the synchronous model. Assuming asynchronous
communication, the next step is to select the type of buffering. Again, we will
choose the most general model: one single multiset buffer for all agents.

Threat Model. In 1983 Dolev and Yao led the basis for a network threat model
that is currently the most widely used model [5]. In the Dolev-Yao model the
intruder has complete control over the communication network. The intruder can
intercept any message and insert any message, as long as he is able to construct
its contents from his knowledge. Conspiring agents are modeled by including
their initial knowledge in the knowledge of the intruder. Intruder models that are
weaker than the Dolev-Yao model are also of interest, for instance when studying
protocol stacks or special communication media. Wireless communication, for
instance, implies that an intruder has the choice of jamming or eavesdropping,
but not both for the same message. Therefore, we will consider the intruder
model as a parameter of our semantics.

Cryptographic Primitives. Cryptographic primitives are (idealized) mathemati-
cal constructs such as encryption. In our treatment of cryptographic primitives
we use the so-called black box approach. This means that we do not exactly
know which mathematical objects are used to implement such constructs, but
that we only know their relevant properties. We will only consider symmetric
and asymmetric encryption and discard other primitives, such as signing. The
perfect cryptography assumption roughly states that nothing can be learned of a
plain text from its encrypted version, without knowing the decryption key.

Security Requirements. Security requirements state the purpose of a security
protocol. They are mostly expressed as safety properties (i.e. something bad
will never happen). In our semantics we will only study secrecy and two forms
of authentication. However, the semantics is set up in such a way that other
trace-based security properties are evenly expressible.

In the next section, we will make the above models precise.

3 Formal Semantics

In this section we will use the domain analysis as a starting point for the devel-
opment of an operational semantics. First, in Section 3.1, we define the security
protocol level which specifies the roles of a protocol. The cryptographic primi-
tives are also treated here. Next, in Section 3.2, the abstract syntax is provided
with a static semantics. The roles only define behaviour schemes, which are in-
stantiated into runs in Section 3.3. This section also contains the agent model
by describing the operational rules which define the behaviour of a network of
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agents. The threat model is described in Sections 3.4 and 3.5. The latter contain
some examples of intruder capabilities. Finally, in Section 3.6, we define secrecy
and synchronisation, which is a strong authentication property.

3.1 Security Protocol Specification

A protocol specification defines the exchange of message terms between agents.
We start by explaining a number of basic elements of these terms, such as con-
stants, roles and variables. Next, we add constructors for pairing and tupling to
construct the set RoleTerm, that will be used in role descriptions.

Basic Sets. We start off with the following sets: V (denoting variables), C (de-
noting constants which are local to each instantiation of a role), R (denoting
roles), and F (denoting function names). Functions from the set F are consid-
ered to be global, and have an arity which must be respected in all terms. If
global constants occur in a protocol, we model them as functions of arity zero.
In Table 1 we show some typical elements of these sets, as used throughout this
paper.

Terms. We introduce constructors for pairing and encryption, and we assume
that pairing is associative.

RoleTerm ::= V | R | F(RoleTerm∗) | C |
(RoleTerm, RoleTerm) | {RoleTerm}RoleTerm

Table 1. Basic sets and some typical elements

Description Set Typical elements

Variables V V, W, X, Y, Z
Constants C ni, nr, sessionkey
Roles R i, r, s
Functions F sk, pk, k, hash
Trusted agents AT a, b, c
Untrusted agents AU e

Terms that have been encrypted with a term, can only be decrypted by either
the same term (for symmetric encryption) or the inverse key (for asymmetric
encryption). To determine which term needs to be known to decrypt a term, we
introduce a function that yields the inverse for any role term.

−1 : RoleTerm → RoleTerm

We require that −1 is its own inverse, i.e. (t−1)−1 = t. Terms are reduced
according to {{s}t}t−1 = s.

Throughout this article we will assume that pk and sk are functions of arity
1, that map to asymmetric keys, such that ∀r∈Rpk(r)−1 = sk(r) and vice versa.
All other terms t are considered to be symmetric keys, for which we have t−1 = t.
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Role Knowledge. Besides terms to be sent and received, a role specification de-
scribes the initial knowledge needed to execute the role We define a role knowl-
edge set as RoleKnow = P(RoleTerm).

Role Specification. We define a role specification as a set of initial knowledge,
and a list of events. We define the set of events E using two new sets: labels L
and security claims Claim, which we explain below.

E =
{

send �(r, r′, t), read �(r′, r, t), claim�(r, c [, t])
∣∣

� ∈ L, r, r′ ∈ R, t ∈ RoleTerm, c ∈ Claim
}

Event send �(r, r′, t) denotes the sending of message t by r, apparently to r′.
Likewise, read �(r′, r, t) denotes the reception of message t by r′, apparently sent
by r. Event claim�(r, c [, t]) expresses that r upon execution of this event expects
security goal c to hold with optional parameter t. A claim event denotes a lo-
cal claim, which means that it only concerns role r and does not express any
expectations at other roles.

The labels � extending the events are needed to disambiguate similar occur-
rences of the same event in a protocol specification. A second use of these labels
will be to express the relation between corresponding send and read events, as
we will see in Section 3.6.

Now we can specify a role. A role specification consists of a list of events, and
some initial knowledge: RoleSpec = RoleKnow × E∗.

Protocol Specification. A protocol specifies the behaviour for a number of roles
by means of a partial function from the set ProtSpec = R → RoleSpec.

We will use MRp(r) as a shorthand for the initial knowledge of role r in a
protocol specification p. In many cases we omit the parameter p if the intented
protocol is clear from the context.

Example. The following role description models the initiator role of the Needham-
Schroeder protocol, without any security requirements.

ns(i) =
({i, r, ni, sk(i), pk(i), pk(r)},
send1(i, r, {i, ni}pk(r)) ·
read2(r, i, {ni, V }pk(i)) ·
send3(i, r, {V }pk(r))

)

This role description follows from Figure 1 by selecting the left-most axis and its
associated events. Notice that we have to clarify which constructs in the terms
are variables (because they receive their value at reception of a message) and
which are constants (because they are determined by the role itself). Therefore,
we define i, r ∈ R, ni ∈ C, sk, pk ∈ F , pk(i)−1 = sk(i), pk(r)−1 = sk(r),
1, 2, 3 ∈ L, and V ∈ V.
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3.2 Static Requirements

In the previous section we have explained the context-free abstract syntax for a
protocol specification. A proper protocol specification will also have to satisfy a
number of well-formedness rules.

Well-Formed Roles. For each role, we require that it meets certain criteria. These
range from the fairly obvious, e.g. each event in a role definition has the same
actor, to more subtle requirements regarding the messages. For the messages
we require that the messages that are sent can actually be constructed by the
sender. This is satisfied if the message is in the knowledge of the sending role.
For variables we require that they first occur in a read event, where they are
instantiated, before they can occur in a send event.

For read events the situation is a bit more complex. As can be seen in the
example above, which describes the initiator role of the Needham-Schroeder
protocol, a read event may impose some structure upon the incoming messages.
A receiver can only match a message against such an expected pattern if his
knowledge satisfies certain requirements.

We introduce a predicate WF (Well Formed) to express that a role definition
meets these consistency requirements, using an auxiliary predicate Readable and
a knowledge inference operator � : RoleKnow × RoleTerm.

Agents can compose and decompose pair terms. A term can be encrypted if
the agent knows the encryption key, and an encrypted term can be decrypted
if the agent knows the corresponding decryption key. This is expressed by the
knowledge inference operator, which is defined inductively as follows.

t ∈M =⇒ M � t

M � t1 ∧M � t2 ⇐⇒M � (t1, t2)
M � t ∧M � k =⇒ M � {t}k

M � {t}k ∧M � k−1 =⇒ M � t

Composing terms t1, t2 into a term t by encryption or tupling implies that t
has t, t1 and t2 as subterms. The subterm operator � is inductively defined as
follows.

t � t t1 � (t1, t2) t1, . . . , tn � f(t1, . . . , tn)
t � {t}k t2 � (t1, t2)

The predicate Readable : RoleKnow × RoleTerm expresses which role terms
can be used as a message pattern for a read event of an agent with a specific
knowledge set. A variable can always occur in a read pattern. Any other term
can only occur in a read pattern, if it can be inferred from the knowledge of the
agent. Only then can it be compared to the incoming messages.
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In order to be able to read a pair, we must be able to read each constituent,
while extending the knowledge with what can be inferred from the other compo-
nent. An encrypted message can be read if it can be inferred from the knowledge
or if it can be inferred after decryption, which requires that the decryption key
is in the knowledge.

Readable(M, t) =⎧⎪⎪⎨
⎪⎪⎩

True if t ∈ V
M � t if t ∈ C ∪ R ∪ F(RoleTerm∗)
Readable(M ∪ {t2}, t1) ∧ Readable(M ∪ {t1}, t2) if t ≡ (t1, t2)
(M � {t1}t2) ∨ (M � t2

−1 ∧ Readable(M, t1)) if t ≡ {t1}t2
We can now construct the predicate WF : R × RoleSpec, that expresses that
a role is well formed. The first argument of this predicate is used to express
that the active role in an event should match the role which behaviour is being
defined. Terms occurring in a send or claim event must be inferable from the
knowledge, while terms occurring in a read event must be readable according to
the definition above.

WF (r, (M, s)) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

True if s ≡ ε
M � (r′, r) ∧ Readable(M, t) ∧WF (r, (M ∪ {t}, s′)) if s ≡ read �(r′, r, t) · s′
M � (r, r′, t) ∧WF (r, (M, s′)) if s ≡ send �(r, r′, t) · s′
M � (r [, t]) ∧WF (r, (M, s′)) if s ≡ claim�(r, c [, t]) · s′
False otherwise

For a protocol specification p we require that all roles are well formed with
respect to their initial knowledge, which is expressed by: ∀r∈dom(p)WF (r, p(r)).

Examples. The next two examples are incorrect role descriptions:

wrong1 (i) = ({i, r, k}, wrong2 (i) = ({i, r, k},
send1(i, r, {i, r, V }k)· read1(r, i, {i, r, {V }k2}k)·
read2(r, i, {V, r}k) ) send2(i, r, {V }k2) )

Role description wrong1 is not well formed because it sends variable V before
it is read. The read event in wrong2 contains a subterm {V }k2. The intention
is that V is initialised through this read. However, since k2 is a symmetric key,
and k2 is not in the knowledge of the role, the value of V cannot be determined
through this read. Therefore, this role description is not well formed. The correct
role description would be the following:

wrong2corrected(i) = ({i, r, k},
read1(r, i, {i, r,W}k)·
send2(i, r,W ) )
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3.3 Runs

The protocol specification describes a set of roles. These roles serve as a blueprint
for what the actual agents in a system should do. A run is defined as an instan-
tiated role. In order to instantiate a role we have to bind the role names to the
names of actual agents and we have to make the local constants unique for each
instantiation. Furthermore, we have to take into account that the bindings of
values to the variables are local to a run too. Thus, the set of terms occurring
in a run differs from the set of terms used in role descriptions.

Run Terms. We assume existence of a set Runid to denote run identifiers and
a set A to denote agents. The set A is partitioned into sets AT (denoting the
trusted agents) and AU (denoting the untrusted agents). Run terms are defined
similarly to role terms. The difference is that abstract roles are replaced by
concrete agents, that local constants are made unique by extending them with
a run identifier, and that variables are instantiated by concrete values. The run
term set also includes the set CI of terms constructed by an intruder. This set
will only be used from Section 3.4 onwards, and it will be explained there. As
for role terms, we have associativity of pairing.

RunTerm ::= A | F(RunTerm∗) | C�Runid | CI |
(RunTerm, RunTerm) | {RunTerm}RunTerm

Instantiation. A role term is transformed into a run term by applying an instan-
tiation.

Inst = Runid × (R → A)× (V → RunTerm)

The first component of an instantiation determines with which run identifier
the constants are extended. The second component determines the instantiation
of roles by agents. The third determines the valuation of the variables.

We extend the inverse function to RunTerm. The functions roles :RoleTerm→
P(R) and vars : RoleTerm → P(V) determine the roles and variables occurring
in a term. We extend these functions to the domain of RoleSpec in the obvious
way.

For instantiation (rid, ρ, σ) ∈ Inst , f ∈ F and terms t, t1, . . . , tn ∈ RoleTerm
such that roles(t) ⊆ dom(ρ) and vars(t) ⊆ dom(σ), we define instantiation by:

(rid, ρ, σ)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(r) if t ≡ r ∈ R
f((rid, ρ, σ)(t1), . . . , (rid, ρ, σ)(tn)) if t ≡ f(t1, . . . , tn)
c�rid if t ≡ c ∈ C
σ(v) if t ≡ v ∈ V
((rid, ρ, σ)(t1), (rid, ρ, σ)(t2)) if t ≡ (t1, t2)
{(rid, ρ, σ)(t1)}(rid,ρ,σ)(t2) if t ≡ {t1}t2

Example. We give two examples of instantiations that might occur in the exe-
cution of a protocol:(

1, {i → a, r → b}, ∅) ({i, ni}pk(r)

)
= {a, ni�1}pk(b)(

2, {i → c, r → d}, {W → ni�1}) ({W,nr, r}pk(i)

)
= {ni�1, nr�2, d}pk(c)
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Runs. A run is an instantiated role specification. As the knowledge of a role is
already statically defined by the role description, we can omit it from the run
specification and define Run = Inst × E∗. As we will see later on, each run in
the system will have a unique run identifier by construction.

State. The system that we consider consists of a number of runs executed by
some agents. Communication between the runs is asynchronous (buffered). In
order to conveniently model the intruder behaviour, we will route communication
through two buffers: one output buffer from the sending run and one input
buffer from the receiving run (for a discussion on the expressive power of such
construction, see [6]). The intruder capabilities will determine how the messages
are transferred from the output buffer to the input buffer.

Both the output buffer and the input buffer store sent messages. Messages
contain a sender, a recipient, and a run term: MSG = A×A×RunTerm. Notice
that, if we identify set product with pairing, we obtain MSG ⊂ RunTerm. A
buffer is a multiset of such messages: Buffer =M(MSG).

Since the knowledge of the intruder is dynamic, we will consider this a com-
ponent in the state of the system, too. It consists of instantiated terms as they
occur in the runs, and is represented by RunKnow = P(RunTerm).

The state of a network of agents executing roles in a security protocol is
defined by

State = RunKnow × Buffer × Buffer × P(Run),

and thus contains the intruder knowledge, the contents of the output buffer, the
contents of the input buffer, and the (remainders of the) runs that still have to
be executed.

Match. Messages from the buffer are accepted by agents if they match a cer-
tain pattern, specified in the read event. We introduce a predicate Match that
expresses that a message matches the pattern for some instantiation of the vari-
ables. The definition of this predicate is a parameter of our system, but we will
give an example of a straightforward typed match.

For each variable, we define a set of run terms which are allowed values. We
introduce an auxiliary function type : V → P(RunTerm), that defines the set
of run terms that are valid values for a variable. Then we define the predicate
Welltyped on (V → P(RunTerm)), that expresses that a substitution is well-
typed: Welltyped(σ) = ∀v∈dom(σ)

(
σ(v) ∈ type(v)

)
.

Using this predicate, we define the typed matching predicate Match : Inst ×
RoleTerm × RunTerm × Inst . The purpose of this predicate is to match an
incoming message (the third argument) to a pattern specified by a role term
(the second argument). This pattern is already instantiated (the first argument),
but may still contain free variables. The idea is to assign values to the free
variables such that the incoming message equals the instantiated role term. The
old instantiation extended with these new assignments provides the resulting
instantiation (the fourth argument).



Operational Semantics of Security Protocols 77

Match(inst, pt,m, inst′) ⇐⇒ inst = (rid, ρ, σ) ∧ inst′ = (rid, ρ, σ′) ∧
σ ⊆ σ′ ∧ dom(σ′) = dom(σ) ∪ vars(pt) ∧
Welltyped(σ′) ∧ (rid, ρ, σ′)(pt) = m

Assume ρ = {i → a, r → b}. Then, some examples for which the predicate is
true are:

inst pt m inst′

Match( (1, ρ, ∅), X, nr�2, (1, ρ, {X → nr�2}) ) ⇐⇒ True
Match( (1, ρ, ∅), {r, ni}pk(i), {b, ni�1}pk(a), (1, ρ, ∅) ) ⇐⇒ True

Some examples where the predicate does not hold, if we assume matching is
typed, and the type of X is the set A ∪ C�Runid ∪ CI

inst pt m inst′

Match( (1, ρ, ∅), nr, nr�2, ) ⇐⇒ False
Match( (1, ρ, ∅), X, (nr�2, ni�1), ) ⇐⇒ False
Match( (1, ρ, ∅), {i, ni}pk(i), {b, ni�1}pk(a), ) ⇐⇒ False

By varying over the function type we can express whether the protocol is
vulnerable to type flaw attacks or not. This also allows for expressing that only
basic type flaws can be detected by the agents.

Derivation Rules. The behaviour of the system is defined as a transition relation
(see [7]) between system states. A transition is labeled with an element of the
set Transitionlabel ::= (Inst , E) | create(Run) | Networkrules(MSG). The set of
network/intruder rules Networkrules is a parameter of the system, and we will
discuss some of the possibilities in Section 3.5.

A protocol description allows for the creation of runs. The runs that can be
created are defined by the function runsof : ProtSpec → P(Run) :

runsof (p) ={(
(rid, ρ, ∅), p(r)

) ∣∣∣ r ∈ dom(p) ∧ rid ∈ Runid ∧ ρ ∈ roles(p(r))×A
}

For F ∈ P(Run) we use F [r′/r] to denote the substitution of r by r′ in F .
We define the set of active run identifiers as

runids(F ) =
{

rid
∣∣∣ (

(rid, ρ, σ), ev
) ∈ F

}

Let p ∈ ProtSpec. Then the basic derivation rules for the system are given
in Table 2. The create rule expresses that a new run can only be created if its
run identifier has not been used yet. The send rule states that if a run executes
a send event, the sent message is added to the output buffer and the executing
run proceeds to the next event. The read rule determines when an input event
can be executed. It requires that the (partially) instantiated pattern specified in
the read event should match any of the messages from the input buffer. Upon
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Table 2. SOS rules

[create]
run = ((rid, ρ, σ), s) ∈ runsof (p), rid �∈ runids(F )

〈M,BS ,BR, F 〉
create(run)

−−−−−−→ 〈M,BS ,BR, F ∪ {run}〉

[send ]
run = (inst, send�(m) · s) ∈ F

〈M,BS ,BR, F 〉
(inst,send�(m))

−−−−−−→ 〈M,BS ∪ {inst(m)},BR, F [(inst, s)/run]〉

[read ]
run = (inst, read�(pt) · s) ∈ F, m ∈ BR,Match(inst, pt, m, inst′)

〈M,BS ,BR, F 〉
(inst′,read�(pt))

−−−−−−→ 〈M,BS ,BR \ {m}, F [(inst′, s)/run]〉

[claim]
run = (inst, claim�(r, c [, t]) · s) ∈ F

〈M,BS ,BR, F 〉
(inst,claim�(r,c [,t]))

−−−−−−→ 〈M,BS ,BR, F [(inst, s)/run]〉

execution of the read event, this message is removed from the input buffer and
the executing run advances to the next event. The claim rule expresses that
an enabled claim event can always be executed. Notice that in all these cases
the intruder knowledge is not affected. The dynamical behaviour of the intruder
knowledge will be defined by the network/intruder rules in Section 3.5.

A state transition is the conclusion of finitely many applications of these rules.
In this way, starting from the initial state, we can derive all possible behaviours of
a system executing security protocol p. This is what we consider the operational
semantics of p.

Initial State. In the initial state of the system both buffers are empty, and no
runs have been created yet. Thus the initial state of the system is given by

s0 = 〈M0, ∅, ∅, ∅〉

where M0 refers to the intruder knowledge, which we define in the next section.

3.4 Initial Intruder Knowledge

We assume the intruder can create a possibly infinite number of constants, de-
fined as the set CI . The initial knowledge of the intruder includes this set. We
model untrusted agents by including their initial knowledge in the initial intruder
knowledge.

We could choose to define the initial knowledge of the intruder as the static
knowledge of all the roles, for all untrusted agents. However, for some protocols
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we require that the untrusted agents cannot play certain roles. It is e.g. undesir-
able that an untrusted agent plays the role of the certificate server that knows
the secret keys of all the agents. We define these roles as the set of trusted roles
RT . All other roles are called the untrusted roles RU . Unless stated otherwise,
we assume RT = ∅, and thus RU = R.

The intruder learns all initial knowledge of a role before it is instantiated in
a specific run. Thus, This excludes any local constants, as well variable names
(because they are not instantiated yet). The initial intruder knowledge will con-
sist of e.g. the names and public keys of all agents, and the secret keys of the
intruder. The following table shows some examples for the knowledge of a role
i ∈ R.

{i} ⊆ MR(i)⇒ AU ⊆M0

{r} ⊆ MR(i)⇒ A ⊆M0

{pk(r), sk(i)} ⊆ MR(i)⇒ {pk(a), sk(e) | a ∈ A ∧ e ∈ AU} ⊆M0

If the i role knowledge contains e.g. sk(i), pk(r), we see that the intruder knowl-
edge contains sk(e) for each untrusted agent e acting in this role. Untrusted
agents are however able to communicate with trusted agents, and thus pk(a) is
in the initial intruder knowledge for each agent a.

To instantiate the role knowledge, we only need to know how the role names
are mapped to agent names: information about a run or instantiation of the
variables is not needed. For a protocol p, an untrusted agent e in an untrusted
role r, the knowledge that is passed to the intruder is defined as

⋃
ρ∈R→A
ρ(r)=e

{
( , ρ, )t

∣∣ t ∈ MR(r) ∧ ∀t′	t(t′ �∈ V ∪ C)
}

For a protocol p, we define the initial intruder knowledge as the union of this
knowledge of all untrusted agents and roles:

M0 = CI ∪
⋃

ρ∈R→A
r∈RU

ρ(r)∈AU

{
( , ρ, )t

∣∣ t ∈ MR(r) ∧ ∀t′	t(t′ �∈ V ∪ C)
}

For example, for the Needham-Schroeder protocol, the initial intruder knowl-
edge would simply consist of the set CI , the names and public keys of all agents,
and the secret keys of the untrusted agents.

3.5 Network/Intruder Rules

In the context of security protocol verification the Dolev-Yao intruder model is
commonplace. In this model, the intruder has complete control over the network.
Messages can be learnt, deflected, and created by such an intruder. However,
often this intruder model is too powerful, for example when an intruder can
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Table 3. Network/intruder rules

[transmit ]
m ∈ BS

〈M,BS ,BR, F 〉
transmit(m)

−−−−−−→ 〈M,BS \ {m},BR ∪ {m}, F 〉

[deflect ]
m ∈ BS

〈M,BS ,BR, F 〉
deflect(m)

−−−−−−→ 〈M ∪ {m},BS \ {m},BR, F 〉

[inject ]
M � m

〈M,BS ,BR, F 〉
inject(m)

−−−−−−→ 〈M,BS ,BR ∪ {m}, F 〉

[eavesdrop]
m ∈ BS

〈M,BS ,BR, F 〉
eavesdrop(m)

−−−−−−→ 〈M ∪ {m},BS \ {m},BR ∪ {m}, F 〉

[jam]
m ∈ BS

〈M,BS ,BR, F 〉
jam(m)

−−−−−−→ 〈M,BS \ {m},BR, F 〉

only eavesdrop on the network, or in wireless communications. In such cases,
it might be desirable to develop more lightweight protocols that are correct
for this weaker intruder model. Therefore, we parameterise over the intruder
model, which is defined as a set of capabilities. Each intruder rule defines a
capability by explaining the effect of the intruder action on the output buffer,
the input buffer and the intruder knowledge. In Table 3 we give some examples
of intruder rules. The transmit rule describes transmission of a message from the
output buffer to the input buffer without interference from the intruder. If the
intruder has eavesdropping capabilities, as stated in the eavesdrop rule he can
learn the message during transmission. The deflect rule states that an intruder
with deflection capabilities can delete any message from the output buffer. The
difference witht the jam rule is that the intruder can read the deflected message
and add it to its knowledge. The inject rule describes the injection of any message
inferable from the intruder knowledge into the input buffer.

Next, we define some interesting intruders. In a network without an intruder
we only have the transmit rule, so NoIntruder = {transmit}. In the Dolev-Yao
model the intruder has full control over the network. Every message is read
and analysed, and anything that can be constructed can be inserted into the
network, so DolevYao = {deflect , inject}. A wireless communication network is
weaker than Dolev-Yao, because it does not allow learning from a message and
blocking it at the same time. Thus we define Wireless = {eavesdrop, jam, inject}.
If the intruder can only eavesdrop, we have ReadOnly = {eavesdrop}.
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It is possible to construct more intruder rules, for intruder capabilities such
as rerouting of messages or the modification of messages.

3.6 Security Properties

Traces. We will discuss some trace based security properties, therefore, we de-
fine the traces generated by the above derivation rules. For α = α0 . . . αn−1 ∈
Transitionlabel∗ we use s0

α→ sn to denote ∃s1,...sn−1s0
α0→ s1 . . . sn−1

αn−1→ sn.
We use s

α→ to denote ∃s′s
α→ s′. The length of a sequence of labels α is denoted

by | α |.
The set of traces Tr : ProtSpec → P(Transitionlabel∗) is defined as {a ∈

Transitionlabel∗ | s0
a→}, where s0 is the initial state of the protocol. For trace

α, we use αi to denote the ith action label from α.
We reconstruct state information from a trace as follows. If αi is an action

from trace α, then Mα
i (or simply Mi) is the intruder knowledge right before

the execution of αi.

Secrecy. For t ∈ RoleTerm, we introduce the claim claim�(r, secret , t).
A protocol p is correct with respect to secrecy if the following holds for all

traces α ∈ Tr(p) and i ∈ N .

αi = ((rid, ρ, σ), claim�(r, secret , t)) ∧ rng(ρ) ⊆ AT ⇒
∀i≤j≤|α|(rid, ρ, σ)(t) �∈Mα

j

Synchronisation. We define a strong authentication requirement called synchro-
nisation. A thorough description of this form of authentication can be found in
[8]. A synchronisation claim boils down to the requirement that the correspond-
ing sends and reads of two communicating runs exactly match each other. This
property resembles the notion of intensional specifications [9] and is stronger
than the well-known agreement property, which can also be described in our
framework.

Synchronisation is defined with help of some auxiliary functions and predi-
cates. The first predicate expresses that for label � two runs agree on the occur-
rences of the send � event and the read � event. We use the function sendrole(�)
to denote the role in which the event send � occurs. The function readrole(�) is
defined likewise.

We define the projection function runidof : Inst → Runid by
runidof (rid, ρ, σ) = rid. For all traces α, k ∈ N , labels � and run identifiers
rid1, rid2, the single-label synchronisation predicate 1L-SYNCH is given by

1L-SYNCH (α, k, �, rid1, rid2) ⇐⇒
∃i,j∈N ,inst1,inst2∈Inst,m1,m2∈MSG

i < j < k ∧
αi = (inst1, send �(m1)) ∧ runidof (inst1) = rid1 ∧
αj = (inst2, read �(m2)) ∧ runidof (inst2) = rid2 ∧
inst1(m1) = inst2(m2)
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This predicate is generalised to sets of labels in the following way. For all
traces α, k ∈ N , label set L, and cast : R → Runid , the multi-label synchroni-
sation predicate ML-SYNCH is given by

ML-SYNCH (α, k, L, cast) ⇐⇒
∀�∈L 1L-SYNCH

(
α, k, �, cast(sendrole(�)), cast(readrole(�))

)
If ML-SYNCH (α, k, L, cast) holds, we say that the set of labels L has correctly
occurred in a trace α before position k with respect to the instantiation cast .

In order to determine the relevant set of labels which should be checked if a
synchronisation claim occurs, we define the set prec(p, cl). This set contains the
causally preceding communications of a claim role event labeled with cl, for a
security protocol p and is given by

prec(p, cl) = {� | read �( , , ) ≺ claimcl( , )}
We introduce the claim nisynch ∈ Claim. A protocol p is correct with respect

to NI -SYNCH if the following holds for all traces α ∈ Tr(p).

αi = (rid, ρ, σ, claim�(r, nisynch)) ∧ rng(ρ) ⊆ AT

⇒ ∃cast:R→Runid (cast(r) = rid ∧ML-SYNCH (α, i, prec(p, �), cast))

4 The Needham-Schroeder(-Lowe) Protocol

In this section we will take a closer look at the Needham-Schroeder protocol
from Figure 1 and illustrate our definitions. The protocol goal is to ensure mu-
tual authentication and as a side effect secrecy of the involved nonces. Starting
point of the protocol is a public key infrastructure. This is depicted by the ini-
tial knowledge above each of the roles in the protocol. The initiator starts the
protocol by sending an encrypted initialisation request to the responder. The
nonce is used to prevent play-back attacks. Only the responder is able to unpack
this message and replies by sending the initiator’s nonce together with his own
fresh nonce. Then the initiator proves his identity by replying the responder’s
nonce.

The man-in-the-middle attack in Figure 2 only requires two runs. One of
trusted agent a performing the initiator role in a session with untrusted agent
m and one of trusted agent b performing the responder role in a session with
agent a. The intruder impersonates both m and a and in this way uses a as an
oracle to unpack message from b. At the end he has fooled b into thinking that
he is talking to a, while he is talking to the intruder.

Knowing this attack, it is straightforward to reconstruct it formally with
our semantics. Our experience shows that when trying to prove a flawed proto-
col correct, the way in which the proof fails often indicates the attack. Rather
than showing the details here, we will prove correctness of the fixed Needham-
Schroeder protocol, which is called the Needham-Schroeder-Lowe protocol. The
protocol is hardened by extending message 2 with the responder name. It is
specified as follows.
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nsl(i) = ({i, r, ni, pk(r), pk(i), sk(i)}, nsl(r) = ({i, r, nr, pk(i), pk(r), sk(r)},
send1(i, r, {i, ni}pk(r))· read1(i, r, {i,W}pk(r))·
read2(r, i, {ni, V, r}pk(i))· send2(r, i, {W,nr, r}pk(i))·
send3(i, r, {V }pk(r)))· read3(i, r, {nr}pk(r)))·
claim4(i, secret , ni)· claim7(r, secret , nr)·
claim5(i, secret , V )· claim8(r, secret ,W )·
claim6(i, nisynch) ) claim9(r, nisynch) )

We assume that there are no trusted roles. For this protocol, the initial intruder
knowledge (cf. Section 3.4) is given by

M0 = CI ∪
⋃

a∈A
{a, pk(a)} ∪

⋃
e∈AU

{sk(e)}

First we introduce some notation and present results which support verification.
We define msgs(p) as the set of all role messages sent in the protocol. The first
lemma helps to infer that secret information which is never transmitted, remains
secret forever.

Lemma 1. Let p be a protocol, i an instantiation and t a basic term. If t is not a
subterm of any message that is ever sent, and i(t) is not a subterm of the initial
intruder knowledge, then i(t) will never be known by the intruder. Formally:

∀t′∈msgs(p)t �� t′ ∧ ∀m:M0�mi(t) �� m ⇒ ∀α∈Tr(p),0≤j≤|α|Mα
j � i(t)

The correctness of this lemma follows from the SOS-rules.
The next lemma expresses that roles are executed from the beginning to

the end. The predicate e ≺r e′ means that event e precedes event e′ in the
specification of role r.

Lemma 2. Let α be a trace of a protocol, let (rid, ρ, σ) be an instantiation and
e′, e events, such that e′ ≺r e for some role r. If for some i (0 ≤ i <| α |)
αi = (rid, ρ, σ, e) then there exists j (0 ≤ j < i) and σ′ ⊆ σ such that αj =
(rid, ρ, σ′, e′).

The correctness of this lemma follows from Table 2 by observing that every run
is “pealed off” from the beginning, while taking into account that the Match
predicate is defined such that it only extends the valuation of the variables.

The next lemma is used to infer from an encrypted message reception that
the message must have been sent by an agent if it contains a component which
is not known to the intruder. In most applications of this lemma we can in-
fer l′ by inspection of the role specification and we have (rid, ρ, σ)({m}k) =
(rid′, ρ′, σ′)(m′), rather than a subterm relation.

Lemma 3. Let α be a trace and let i be an index of α. If
αi = ((rid, ρ, σ), read �(x, y, {m}k)) and M0 � (rid, ρ, σ)({m}k) , and Mα

i �

(rid, ρ, σ)(m), then there exists index j < i such that
αj = (rid′, ρ′, σ′, send �′(x′, y′,m′)) and (rid, ρ, σ)({m}k) � (rid′, ρ′, σ′)(m′).
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The correctness of this lemma follows from the fact that if the intruder does
not know m when the message containing {m}k is read, he could not have
constructed the encryption. Thus, it must have been sent as a subterm earlier.

The final lemma is characteristic for our model. It expresses that when two
instantiations of a constant (such as a nonce or session key) are equal, they were
created in the same run.

Lemma 4. Let (rid, ρ, σ) and (rid′, ρ′, σ′) be instantiations, and let n ∈ C. If
(rid, ρ, σ)(n) = (rid′, ρ′, σ′)(n) we have rid = rid′.

Theorem 1. The Needham-Schroeder-Lowe protocol is correct in the Dolev-Yao
intruder model with conspiring agents and without type flaws.

Proof. We will sketch the proofs for claim7 and claim9. The other claims are
proven analogously.

First observe that the intruder will never learn secret keys of trusted agents.
This follows directly from Lemma 1, since none of the messages contain an
encryption key in the message text. Since the set of keys known to the intruder
is constant, it must be the case that if the intruder learns a basic term he learns
it from unpacking an intercepted message which was encrypted with the key of
an untrusted agent.

Proof Outline. We construct proofs for the Needham-Schroeder-Lowe protocol.
The proof construction would fail for the Needham-Schroeder protocol, and we
will use a marker † to indicate where the difference occurs. After the proof of
claim7, we briefly discuss this difference.

Both proofs will roughly follow the same structure. We examine the occur-
rence of a claim event in a trace of the system. Based on the rules of the se-
mantics, we gradually derive more information about the trace, until we can
conclude that the required property holds.

Proof of claim7. In order to prove claim7 we assume that α is a trace with index
r7, such that αr7 = ((ridr7, ρr7, σr7), claim7(r, secret , nr)) and rng(ρr7) ⊆ AT .
Now we assume that the intruder learns nr and we will derive a contradiction.
Let k be the smallest index such that (ridr7, ρr7, σr7)(nr) ∈ Mk+1, and thus
(ridr7, ρr7, σr7)(nr) �∈Mk. Inspection of the derivation rules learns that this in-
crease in knowledge is due to an application of the send rule, followed by an appli-
cation of the deflect rule. Therefore, there must be a smallest index p < k such
that αp = ((rid′, ρ′, σ′), send �(m)) and (ridr7, ρr7, σr7)(nr) � (rid′, ρ′, σ′)(m).
Since we have three possible send events in the NSL protocol, we have three
cases: � = 1, 2, or 3.

[� = 1] In the first case we have αp = ((rid′, ρ′, σ′), send1(i, r, {i, ni}pk(r))).
Since constants i and ni both differ from nr, the intruder cannot learn
(ridr7, ρr7, σr7)(nr) from (rid′, ρ′, σ′)(i, r, {i, ni}pk(r)), which yields a contradic-
tion.

[� = 2] In the second case αp = ((rid′, ρ′, σ′), send2(r, i, {W,nr, r}pk(i))). The
intruder can learn nr because ρ′(i) is an untrusted agent and either
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(ridr7, ρr7, σr7)(nr) = (rid′, ρ′, σ′)(W ) or (ridr7, ρr7, σr7)(nr) = (rid′, ρ′, σ′)(nr).
We discuss both options separately.

(i) For the former equality we derive that (rid′, ρ′, σ′)(W ) �∈Mp, so we can ap-
ply Lemmas 2 and 3 to find i1 with αi1 = ((ridi1, ρi1, σi1), send1(i, r, {i, ni}pk(r))) .
This gives (ridi1, ρi1, σi1)(ni) = (rid′, ρ′, σ′)(W ) = (ridr7, ρr7, σr7)(nr), which
cannot be the case since ni and nr are distinct constants.

(ii) That the latter equality yields a contradiction is easy to show. Using
Lemma 4 we derive ridr7 = rid′ and since run identifiers are unique, we have
ρr7 = ρ′. So ρr7(i) = ρ′(i), which contradicts the assumption that ρr7(i) is a
trusted agent.

[� = 3] In the third case we have αp = ((rid′, ρ′, σ′), send3(i, r, {V }pk(r))). In
order to learn (ridr7, ρr7, σr7)(nr) from (rid′, ρ′, σ′)(i, r, {V }pk(r)) we must have
that
(rid′, ρ′, σ′)(V ) = (ridr7, ρr7, σr7)(nr) and that ρ′(r) is an untrusted agent. Using
Lemma 2 we find index i2 such that αi2 = ((rid′, ρ′, σ′), read2(r, i, {ni, V, r}pk(i)) .
Because (rid′, ρ′, σ′)(V ) �∈ Mp we can apply Lemma 3 to find index r2 with
αr2 = ((ridr2, ρr2, σr2), send2(r, i, {W,nr, r}pk(i)) .
This gives ρ′(r) = ρr2(r). (†)

Next, we derive (ridr2, ρr2, σr2)(nr) = (rid′, ρ′, σ′)(V ) = (ridr7, ρr7, σr7)(nr).
Applying Lemma 4 yields ridr2 = ridr7 and thus ρr2 = ρr7, so ρ′(r) = ρr2(r) =
ρr7(r). Because ρ′(r) is an untrusted agent while ρr7(r) is trusted, we obtain a
contradiction. This finishes the proof of claim7.

Note †: Please notice that the step in the proof marked with † fails for the
Needham-Schroeder protocol, which gives an indication of why the hardening of
the second message exchange is required.

Proof of claim9. Let α ∈ Tr(nsl) be a trace of the system. Suppose that for
some r9 and (ridr, ρr, σr9) ∈ Inst , with rng(ρr) ⊆ AT , we have
αr9 = ((ridr, ρr, σr9), claim9(r, nisynch)) . In order to prove this synchronisation
claim correct, we must find a run executing the initiator role which synchronises
on the events labeled 1, 2, and 3, since prec(nsl, 9) = {1, 2, 3}. By applying
Lemma 2, we find r1, r2, r3 (0 ≤ r1 < r2 < r3 < r9) and σr1 ⊆ σr2 ⊆ σr3 ⊆ σr9,
such that

αr1 = ((ridr, ρr, σr1), read1(i, r, {i,W}pk(r)))
αr2 = ((ridr, ρr, σr2), send2(r, i, {W,nr, r}pk(i)))
αr3 = ((ridr, ρr, σr3), read3(i, r, {nr}pk(r))).

We have already proved that nr remains secret, so we can apply Lemma 3
and find index i3 and (ridi, ρi, σi3) such that i3 < r3 and
αi3 = ((ridi, ρi, σi3), send3(i, r, {V }pk(r))) ∧ (ridr, ρr, σr3)(nr)=(ridi, ρi, σi3(V ).
By applying Lemma 2 we obtain i1 < i2 < i3 such that

αi1 = ((ridi, ρi, σi1), send1(i, r, {i, ni}pk(r)))
αi2 = ((ridi, ρi, σi2), read2(r, i, {ni, V, r}pk(i)))
αi3 = ((ridi, ρi, σi3), send3(i, r, {V }pk(r))).
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Now that we have found out that run ridi is a candidate, we only have to
prove that it synchronises with run ridr. Therefore, we have to establish r2 < i2,
i1 < r1 and that the corresponding send and read events match each other.

First, we observe αi2. Since (ridr, ρr, σr3)(nr) is secret, (ridi, ρi, σi2)(V ) is
secret too and we can apply Lemma 3, obtaining index r2′ < i2 such that
αr2′ = ((ridr′ , ρr′ , σr2′), send2(r, i, {W,nr, r}pk(i))) such that we have
(ridi, ρi, σi2)({ni, V, r}pk(i)) = (ridr′ , ρr′ , σr2′)({W,nr, r}pk(i)). This implies that
we have (ridr, ρr, σr3)(nr) = (ridi, ρi, σi3(V ) = (ridr′ , ρr′ , σr2′)(nr), so from
Lemma 4 we have ridr = ridr′ , and thus r2 = r2′. This establishes synchronisa-
tion of events αi2 and αr2.

Next, we look at αr1. Because (ridr, ρr, σr1)(W ) is secret (cf. claim 8), we
can apply Lemma 3, which gives index i1′ < r1 such that
αi1′ = ((ridi′ , ρi′ , σi1′), send1(i, r, {i, ni}pk(r))) and (ridr, ρr, σr1)({i,W}pk(r)))=
(ridi′ , ρi′ , σi1′)({i, ni}pk(r)). Correspondence of αi2 and αr2 gives
(ridi, ρi, σi2)(ni) = (ridr, ρr, σr2)(W ) = (ridr, ρr, σr1)(W ) = (ridi′ , ρi′ , σi1′)(ni).
By lemma 4 ridi and ridi′ are equal, which establishes synchronisation of events
αr1 and αi1. This finishes the synchronisation proof of claim9.

5 Related Work

There is a wealth of different approaches for the modeling of security protocols.
Very often the focus is on verification tools, yielding a model which is only
informally or implicitly defined.

We will briefly compare our approach to the three prominent approaches:
BAN logic (because of its historic interest), Casper/FDR (because it has power-
ful tool support), and Strand spaces (because this approach has much in common
with ours). We conclude with short remarks on the spi calculus and modeling
security protocols as open systems.

In 1989 Burrows, Abadi and Needham published their ground breaking work
on a logic for the verification of authentication properties [2]. In this so-called
BAN-logic, predicates have the form “P believes X”. Such predicates are derived
from a set of assumptions, using derivation rules like “If P believes that P and
Q share key K, and if P sees message {X}K then P believes that Q once said
X”. Note that this rule implies a peculiarity of the agent model, which is not
required in most other approaches, viz. an agent can detect (and ignore) his own
messages. The BAN-logic has a fixed intruder model, which does not consider
conspiring agents. The Needham-Schroeder protocol (see Figure 1) was proven
correct in BAN-logic because the man-in-the-middle attack from Figure 2 could
not be modeled. Another major difference with our approach is that the BAN-
logic uses a rather weak notion of authentication. The authentication properties
verified for most protocols have the form “A believes that A and B share key
K” (or “. . . share secret X”), and “A believes that B believes that A and B
share key K”. This weak form of agreement is sometimes even further reduced
to recent aliveness. Furthermore, type-flaw attacks cannot be detected using
BAN-logic. An interesting feature is that BAN logic treats time stamps at an
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appropriate abstract level, while an extension of our semantics with time stamps
is not obvious. Due to the above mentioned restrictions interest in BAN logic
has decreased. Recent research concerns its extension and the development of
models for the logic.

Developed originally by Gavin Lowe, the Casper/FDR tool set as described
in [10] is not a formal security protocol semantics, but a model checking tool.
However, as the input is translated into a CSP process algebraic model, there is
an implicit semantics. The reason we mention it here, is that Casper/FDR is a
mature tool set, and none of the other semantics we mention has such a tool set
available. In the research for Casper/FDR many interesting security properties
have been formulated in terms of CSP models (see e.g. [11]) and some of these
have been consequently adapted in other models. An advantage of using process
algebra for modeling security protocols is that the model is easily extended.
However, for Casper/FDR there is no explicit formal semantics of the protocol
language and properties except in terms of CSP. Because of this, it is difficult
to get results about properties besides using the tools.

The Strand space approach [12] is closely related to the use of Message Se-
quence Charts which we advocate for the description of protocols and protocol
runs. Roughly, the difference is that we provide a totally ordered semantics,
whereas Strand spaces describe a partial order on the events. The notion of a
strand is similar to our notion of run, and a strand space is the set of all possi-
ble combinations of strands, reflecting our semantical model of interleaved runs.
Strand spaces seem to be very tightly linked to the Dolev-Yao intruder model
and although the intruder is modeled as a collection of strands, just like normal
agents, it is not easy to vary over the intruder network model. With respect
to the security properties, we mention that both secrecy and agreement are ex-
pressible in the Strand spaces model. Additional research must indicate whether
synchronisation can be expressed. Finally, we mention that our focus on security
claims which are local to the agent’s run is not reflected in Strand spaces.

As an example of a process calculus approach, we have the spi calculus devel-
oped by Abadi and Gordon in [13]. It is an extension of the pi calculus in [14].
Although this has advantages, it also inherits properties of the pi calculus that
do not immediately seem useful for security protocol analysis. As an example,
expressing that a run is synchronising with another run over multiple messages
is non-trivial, because it can be hard to tell two runs of the same role (with
identical parameters) apart. To always be able to distinguish two runs, addi-
tional constructs are needed as in [15]. Having an explicit run identifier in the
semantics makes it easier to express such properties.

Recently, Martinelli has proposed to analyse security protocols as open sys-
tems in [16]. A process calculus for security protocols is proposed, where the
intruder process is left unspecified. This allows for protocol properties to be
checked with respect to any intruder, which (for safety properties) amounts to
the Dolev-Yao intruder model. Properties can also be checked or with respect
to a specific intruder, which is similar to having different intruder rules in our
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semantics. Two main drawbacks are that the analysis assumes a finite number
of agents and runs, and that it cannot be used to find type flaw attacks.

In the methods mentioned here, the construction of the initial intruder knowl-
edge is left implicit.

6 Conclusions and Future Research

We have developed a generic canonical model for fundamental analysis of security
protocols. Some characteristics of this model are that we give explicit static
requirements for valid protocols, and that the model is parametric with respect to
the matching function and intruder network capabilities. Multi-protocol analysis,
by which we mean the analysis of running several different protocols or protocol
roles concurrently, is handled in an intuitive way by simply adding more role
descriptions to the model. In line with this, security properties are defined as
local claims. Furthermore, local constants are bound to runs, which can assist
in the construction of proofs.

As future work, we will be formulating metaresults. For instance, we are
interested in results about the composition of protocols, and the decomposition
of problems into simpler components. Related to this are transformations of
protocols in a given intruder model such that the same security properties are
met.

Results in composition of protocols can lead to security by construction.
Given a set of security properties and an intruder model, we would like to con-
struct a correct protocol.

We have already developed a tool for model checking secrecy based on this
model [17]. Future work will be to develop this into a mature toolset. Parallel
to this we are investigating state space reduction techniques for certain settings
in our model, such as only eavesdropping, and specific properties.

Acknowledgements. Thanks are due to Erik de Vink for his comments on
our work and the stimulating discussions on security protocol semantics. Fur-
thermore, we would like to thank Niek Palm for his study on the application of
our semantics to the verification of a collection of security protocols.

References

1. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21 (1978) 993–999

2. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transac-
tions on Computer Systems 8 (1990) 18–36

3. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Proceedings of TACAS. Volume 1055., Springer Verlag (1996) 147–166

4. Mauw, S., Wiersma, W., Willemse, T.: Language-driven system design. Inter-
national Journal of Software Engineering and Knowledge Engineering (2004) To
appear.



Operational Semantics of Security Protocols 89

5. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29 (1983) 198–208

6. Engels, A.G., Mauw, S., Reniers, M.: A hierarchy of communication models for
Message Sequence Charts. Science of Computer Programming 44 (2002) 253–292

7. Plotkin, G.: A structural approach to operational semantics. Technical Report
DIAMI FN-19, Computer Science Department, Aarhus University (1981)

8. Cremers, C., Mauw, S., de Vink, E.: Defining authentication in a trace model.
In Dimitrakos, T., Martinelli, F., eds.: FAST 2003. Proceedings of the first in-
ternational Workshop on Formal Aspects in Security and Trust, Pisa, IITT-CNR
technical report (2003) 131–145

9. Roscoe, A.W.: Intensional Specifications of Security Protocols. In: Proc. 9th
Computer Security Foundations Workshop, IEEE (1996) 28–38

10. Lowe, G.: Casper: A compiler for the analysis of security protocols. In: Proc. 10th
Computer Security Foundations Workshop, IEEE (1997) 18–30

11. Lowe, G.: A hierarchy of authentication specifications. In: Proc. 10th Computer
Security Foundations Workshop, IEEE (1997) 31–44
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1 Introduction

At the University of Paderborn, the Railcab project is developing an intelligent rail-
based transportation system. Its vision is to combine flexible, on-demand scheduling
with cost and resource effectiveness, thus offering the advantages of both individual
and public transportation. Fleets of intelligent shuttles capable of transporting a small
number of passengers or a single freight container autonomously navigate a passive
track system and make independent and decentralized operational decisions.

At the Dagstuhl Seminar Scenarios: Models, Transformations and Tools, a case
study focussing on the logistic aspects of this system was used in an extra design
session. As it is consequently referenced by several papers in these proceedings, we
provide a short description of the case study in the following sections. After a short
overview in Section 2, we describe the architecture of the provided simulator in Section
3 and finally outline the possible interaction scenarios in Section 4. For further infor-
mation and a detailed interface specification, please consult the case study web site.1

2 System Overview

The case study is based on a very simple system model. Shuttle agents move around
on a topology consisting of railway stations interconnected by track sections. Orders
for transportation tasks that consist of moving a certain number of passengers from one
station to another while respecting a certain deadline are published and auctioned off
among the shuttles. The lowest bidder is awarded the task and paid upon successful
completion, but risks a contractual penalty in case of tardiness. Shuttles need to pay for
track usage and maintenance.

The Network. The railway network is modelled as a directed graph. Nodes may be
stations or either converging or diverging switches. Stations can simultaneously accom-

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

�� Supported by the International Graduate School of Dynamic Intelligent Systems.
1 http://www.upb.de/cs/ag-schaefer/CaseStudies/ShuttleSystem/. There, you may also download

a more detailed case study description and a simulation environment implementing the speci-
fication, which can serve as a testbed for shuttle designs.

S. Leue and T.J. Systä (Eds.): Scenarios, LNCS 3466, pp. 90–94, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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modate an unlimited number of shuttles. Maintenance is carried out at stations, but only
if explicitly initiated by the shuttle.

The directed edges represent tracks that may only be traversed in the specified di-
rection. Paths on the graph correspond to track sections. A track section that directly
connects two stations is called a connection and needs to be unique. Connections may
share common track sections, but it is currently not possible to deviate from a connec-
tion once the traversal has been started. They may be temporarily disrupted, which does
not affect the shuttles currently travelling on it, but only keep new shuttles from entering
it. All shuttles are duly informed about disruptions and may opt for an alternate route.

Orders. Orders are published and auctioned by a broker. They specify a starting point,
a destination, the number of passengers, and the contractual penalty. Besides, they are
stamped with their publication time, the time the auction ends and the deadline for
the completion of the order. The deadline is computed by adding the predetermined
processing time to the time when the order is accorded to the lowest-bidding shuttle at
the end of the auction. Any shuttle may place bids for any order. In case of a tie, the
shuttle that first made the offer is awarded the order.

Shuttles. Shuttles are responsible for processing and executing the orders. They have a
fixed maximum capacity for transporting passengers. They may transport any number
of orders at a time within the limits of their available capacity. There is no limitation
on the number and total capacity of the orders a shuttle may bid for and obtain simulta-
neously. Shuttles complete orders by travelling to the starting point, explicitly picking
up the passengers, proceeding to the destination and unloading. Passengers may not be
unloaded anywhere but at their destination.

Income and Expenses. At initialization time, shuttles receive a fixed seed capital. A
shuttle with a negative balance is bankrupt. It is retired at the next train station.During
the run of the simulation, orders are a shuttle’s only source of income. Upon successful
completion of an order, the shuttle needs to claim the payment. An order may specify
one of two possible modes of payment: credit card payments are transfered immediately
upon receipt of the claim, while invoiced payments may be deferred. A shuttle may
need to send up to two reminders, each preceded by a waiting period of no less than
2500 simulation periods, before it is paid. All invoices are paid eventually. Premature
reminders are ignored, however. Shuttles incur three different kinds of expenses:

– Toll: a fee for the utilization of connections is levied upon arrival at the destination.
The amount is fixed and determined by the topology.

– Maintenance: maintenance takes place at train stations and consumes both time
and money. It is automatically triggered once the distance travelled since the last
maintenance exceeds a certain limit, but may also be scheduled at any earlier time
by the shuttle. It can not be interrupted, however. Payment is immediate.

– Contractual penalties: if a shuttle does not complete an order before the associated
deadline, it needs to pay the specified contractual penalty. It is still compelled to
complete the order, but will receive no payment. If the shuttle has not even loaded
the order before the deadline, it needs to pay the amount of its bid in addition to the
penalty and loses the order.
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3 Architecture

All interactions between the different agents in the system are realized using messages.
The key aspect of the system’s architecture is therefore the approach to message pass-
ing. The control logic of each of the system’s agents, most notably of each shuttle, is
run in a dedicated thread in order to ensure a fairer distribution of resources and keep
individual agents from blocking one another. While Java method calls are by nature
synchronous, a mechanism was devised to enable the simulation of asynchronous mes-
sage passing by means of a message handler. It accepts message objects, relinquishes
control of the sending thread immediately afterwards and then delivers the message at
the appropriate time. As it is responsible for queuing, routing and delivering all inter-
nal and external messages, the message handler is the central entity of the system (see
Figure 1).

Shuttle MessageHandler Simulator

BankingAgent BrokerAgentTopologyAgent DisablingAgent
XML Log

Event Log

Fig. 1. Kernel components

All components of the system are derived from the Agent type. It provides the basic
interfaces and data structures for interfacing with the communication framework. The
kernel consists of five agents.

– The Topology Agent stores and publishes the network’s topology
– The Broker Agent loads or generates a sequence of orders, publishes them, and

manages the auctioning process. The generated sequences of orders are logged to an
XML file that may be used to reuse an identical scenario for testing and controlled
experimentation.

– The Banking Agent is in charge of transferring money from and to the shuttles, and
the invoicing process

– The Disabling Agent randomly disables connections between stations
– The Simulator simulates the physical part of the system. Running inside the Simula-

tor, there is a shuttle process representing the hardware component of each shuttle.
Shuttles may communicate with their shuttle process using a special set of mes-
sages defined below. The Simulator keeps a debug log that can be used for the
analysis of a simulation run.

– The Shuttle Agents control the shuttles’ operation. They must be derived from the
ShuttleAgent type and, for performance reasons, may not create additional threads
nor read from or write to files.
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4 Interaction Scenarios

A set of interaction scenarios between shuttles, their physical sensors and actuators
and the agents of the system kernel exists. Shuttles can issue commands, e.g. to move
to a station, or request information about the environment, e.g. whether a particular
connection is currently interrupted.

Though central to the architecture, the message handler is just repeating received
messages and does not add anything to the interaction semantics from the application
perspective. In order to increase their clarity, we will therefore omit the message handler
from the descriptions and treat all exchanges like direct interactions. Nonetheless, a
delay occurs whenever messages are passed to the message handler, which has to be
considered when requesting wake-up calls or calculating internal deadlines.

As most exchanges are fairly basic, we only provide a diagram to illustrate a more
complex example in order to keep this document compact. As the message handler
simulates asynchronous communication, the diagram uses the arrow shape expressing
asynchronicity.

Shuttle Commands. All shuttle command messages follow a basic command and reply
schema. The shuttle agent expresses its desire to perform a certain action, then the shut-
tle process gives the appropriate response. Commands include moving to a destination,
loading and unloading tasks, initiating maintenance, etc. The shuttle process checks the
associated requirements, e.g. in case of a move command whether source and destina-
tion are valid, no maintenance is due, and there is sufficient money to pay the toll. The
shuttle process then replies with a message indicating whether a request was valid or
invalid, and a second message once the command has been executed completely in the
former case.

Broker Agent Interaction. The Broker Agent publishes Orders with the OrderAvail-
able message. Shuttles may then calculate their price and reply with a MakeOffer mes-
sage. The broker then evaluates the offers and sends an AssignOrder message to the
winner. The losing bidders are not informed about the result of the auction.

Topology Agent Interaction. The topology represents one of the most important fea-
tures of the shuttles’ environment. During initialization, shuttles request this informa-
tion from the Topology Agent, which returns a collection of TopologyDataObjects. Ad-
ditionally, the agent sends a GameConstantsMessage containing the simulation’s pa-
rameters.

Banking Agent Interaction. The Banking Agent is in charge of all financial transac-
tions. It is the recipient of claims and reminders, and checks their validity and timeli-
ness. It transfers payments to the shuttles’ accounts, but is also responsible for deducing
tolls, penalties, and maintenance cost.

Auxiliary Messages. There are four classes of auxiliary messages. The first type al-
lows the shuttle to enquire about the state of the environment, e.g. the current simula-
tion time, its own position and account balance, or disabled track sections. Secondly,
a shuttle may send messages to the visualization component, usually containing some
implementation-specific details to display. Then, there is the possibility to request a



94 H. Giese and F. Klein

wake-up call from the simulator at a certain time or when a certain event occurs, and
send the shuttle thread to sleep in order to save processing resources. A shuttle will
equally be activated whenever any other message is sent to it.

Exemplary Interaction. The diagram below (see Figure 2) shows a typical sequence
of interactions between a shuttle and various kernel agents. A shuttle bids for, obtains
and successfully completes an order.

shuttle:ShuttleAgent BrokerAgent BankingAgent

10: Calculate Offers - Order B

8: Calculate Offers - Order A

20: Check Command

17: Check Command

13: Check Command

11: Calculate Path

6: Calculate Offer

2: Calculate Offer

21: ShuttleUnloaded - Order A

18: ShuttleLoaded - Order A

15: ShuttleArrived

14: ShuttleMoving

22: Invoice - Order A

19: UnloadShuttle - Order A

16: LoadShuttle - Order A

12: MoveShuttle

7: WakeUpRequest

4: WakeUpRequest

3: MakeOffer - Order A

9: Assign Order - Order A

5: OrderAvailable - Order B

1: OrderAvailable - Order A

sleeping

sleeping

(11 - 15)

This

block is

repeated

until start

station is

reached

Like steps

(11 - 15)

until

destination

is reached

Simulator

Fig. 2. Exemplary interaction scenario
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Abstract. Individual functional requirements represent fragments of behavior, 
while a design that satisfies a set of functional requirements represents inte-
grated behavior. This perspective admits the prospect of constructing a design 
out of its requirements. A formal representation for individual functional re-
quirements, called behavior trees makes this possible.  Behavior trees, derived 
by rigorous translation from individual functional requirements stated in natural 
language, may be composed, one at a time, to create an integrated design be-
havior tree (DBT). We can then transition from this problem domain represen-
tation directly and systematically to a solution domain representation of the 
component architecture of the system and the behavior designs of the individual 
components that make up the system – both are emergent properties of a DBT. 
The Early Warning System case study is used to illustrate this genetic design 
method, and show its potential for defect detection and control of complexity 
compared with the Statechart design method.   

1   Introduction 

The Early Warning System is typical of many problems that are relatively easy to 
state informally and loosely in natural language. Such problem statements often have 
two significant characteristics: they imply a lot more than they state and they contain 
defects that can significantly impact subsequent design efforts. Confronted with these 
challenges, existing methods for requirements analysis [2], representation and then 
design usually opt for producing multiple partial views of a system. Our position is 
that the multiple partial views approaches, which include Statecharts, usually make it 
difficult to see many types of defects, particularly those that involve interactions be-
tween requirements [1][6][8]. A more practical way forward, we suggest,  is to use a 
single integrated view. The challenges we must confront in his endeavour are:  

• how to get on top of requirements complexity, 
• how to preserve, and where necessary, clarify the intention of stakeholders, and  
• how to systematically, repeatably, detect requirements defects early as possible. 

We suggest there is a way to deliver these benefits and consistently make real pro-
gress with the requirements problem. It demands that we use the requirements of a 
system in a very different way to existing software development methods. Tradition-
ally the goal of systems development is to build a system that will satisfy the agreed 
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requirements. We suggest this task is too hard, particularly if there is a large and com-
plex set of requirements for a system. A much simpler and easier task is to seek to 
build a system out of its requirements. If we opt to do this it implies two things: 

• we have a representation that will formally represent the behavior in individual 
requirements 

• we have a way of combining/integrating individual requirements to create a sys-
tem that will satisfy all requirements. 

Behavior Trees handle both of these needs.  

2   Behavior Trees 

The Behavior Tree Notation captures in a simple tree-like form of composed compo-
nent-states what usually needs to be expressed in a mix of other notations. Behavior is 
expressed primarily in terms of components realizing [State], ??Event??, ?Decision?, 
<Data_Out>, >Data_In< component attribute assignment “:=”, and reversion “^” to 
an equivalent component-state mentioned higher up in the tree. This notation is aug-
mented by the logic and graphic forms of conventions found in programming lan-
guages to support composition.  

The vital question that needs to be settled, if we are to build a system out of its re-
quirements, is can the same formal representation of behavior be used for require-
ments and for a design? Behavior trees make this possible, and as a consequence, 
clarify the requirements-design relationship. Behavior trees provide a direct and 
clearly traceable relationship between what is expressed in the natural language repre-
sentation and its formal specification. Translation is carried out on a sentence-by-
sentence, word-by-word basis, e.g.., the sentence “the bell sounds when the button is 
pressed” is translated to the behavior tree below: 

BUTTON
[ Pressed ]

Bell
[ Sounds ]

 

3   Genetic Design 

Conventional software engineering applies the underlying design strategy of con-
structing a design that will satisfy its set of functional requirements. In contrast to 
this, a clear advantage of the behavior tree notation is that it allows us to construct a 
design out of its set of functional requirements, by integrating the behavior trees for 
individual requirements behavior trees (RBTs), one-at-a-time, into an evolving DBT 
[3]. This very significantly reduces the complexity of the design process and any 
subsequent change process. What we are suggesting is that a set of functional re-
quirements, represented as behavior trees, in principal at least (when they form a 
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complete and consistent set), contains enough information to allow their composition. 
This property is the exact same property that a set of pieces for a jigsaw puzzle and a 
set of genes possess [12]. The obvious question that follows is: “what information is 
possessed by a set of functional requirements that might allow their composition or 
integration?” The answer follows from the observation that the behavior expressed in 
functional requirements does not “just happen”. There is always a precondition that 
must be satisfied in order for the behavior encapsulated in a functional requirement to 
be accessible or applicable or executable. We call this requirement of genetic design, 
the precondition axiom. 

Precondition Axiom 

Every constructive, implementable individual functional requirement of a system, 
expressed as a behavior tree, has associated with it a precondition that needs to be 
satisfied in order for the behavior encapsulated in the functional requirement to be 
applicable. 

A second building block is needed to facilitate the composition of functional re-
quirements expressed as behavior trees. Jigsaw puzzles, together with the precondi-
tion axiom, give us the clues as to what additional information is needed to achieve 
integration. With a jigsaw puzzle, what is key, is not the order in which we put the 
pieces together, but rather the position where we put each piece. If we are to integrate 
behavior trees in any order, one at a time, an analogous requirement is needed. We 
have already said that a functional requirement’s precondition needs to be satisfied in 
order for its behavior to be applicable. It follows that some other requirement, as part 
of its behavior tree, must establish the precondition. This requirement for integrating 
functional requirements expressed as behavior trees is expressed as follows. 

Interaction Axiom 

For each individual functional requirement of a system, expressed as a behavior tree, 
the precondition it needs to have satisfied in order to exhibit its encapsulated behav-
ior, must be established by the behavior tree of at least one other functional require-
ment that belongs to the set of functional requirements of the system. The behavior 
tree that forms the root of the integrated tree is excused from this requirement. 

The precondition axiom and the interaction axiom play a central role in defining 
the relationship between a set of functional requirements for a system and the corre-
sponding design. What they tell us is that in the first stage of the design process, in the 
problem domain, we can proceed by first translating each individual natural language 
representation of a functional requirement into one or more behavior trees. We may 
then proceed to integrate those behavior trees just as we would with a set of jigsaw 
puzzle pieces. What we find when we pursue this whole approach to software design 
is that the process can be reduced to the following four overarching steps: 

• Requirements translation – (problem domain) 
• Requirements integration – (problem domain) 
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• Component architecture transformation (solution domain) 
• Component behavior projection  (solution domain) 

Each overarching step needs to be augmented with a verification and refinement 
step designed specifically to isolate and correct each class of defects that show up in 
the different work products generated by the process. Because of space limitations 
here we only have room to show the results of translating then integrating the origi-
nally stated functional requirements for the Early Warning System (see each sentence 
in Table 1). We will also provide brief commentary on the main steps. Elsewhere 
each of the steps in the process is described in more detail [3] 

Table 1. Early Warning System Functional Requirements 

3.1   Requirements Translation  

Requirements translation is the first formal step in the Genetic Design process. Its 
purpose is to translate each natural language functional requirement, one at a time, into 
one or more behavior trees. Translation identifies the components (including actors and 
users), the states they realise (including attribute assignments), the events and deci-
sions/constraints that they are associated with, the data components exchange, and the 
causal, logical and temporal dependencies associated with component interactions. 
Nouns in the text that have associated behavior are identified as components. 

When requirements translation has been completed each individual functional re-
quirement is translated to one or more corresponding RBTs. In Figure 1 we show the 
“raw” translations for sentences S1, S5 and S6 from the original statement of re-
quirements in Table 1. As originally stated each of the three requirements is missing 
implied precondition information that would allow their direct integration. Implied 
preconditions (colour-coded yellow, and marked with a “+” where colour is not avail-
able) have been added to allow the requirements to be directly integrated by finding 
where the root of one RBT occurs in another RBT. With S1 we have dropped the 
adjective “external” and acknowledged that something must be “sent”  <… > in order 
to be “received” > … <. From the context the behavior in S1 can only happen if the  
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Fig. 1. RBTs for requirements S1, S5 and S6 

EWS is monitoring and the sensor is connected. In S5 the screen input “>> … <<” 
must be sent somewhere (to the EWS). This all happens when the EWS is not moni-
toring. In S6 “system” is an alias for “EWS”. 

3.2   Requirements Integration 

Once we have carried out all the requirements translations we can systematically and 
incrementally construct a design behavior tree  that will satisfy all its requirements by 
integrating the individual requirements’ behavior trees one at a time. Integrating two 
behavior trees turns out to be a relatively simple process that is guided by the precon-
dition and interaction axioms referred to above. In practice, it most often involves 
locating where, (if at all) the component-state root node of one behavior tree occurs in  
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S5
@@

EW S
> Range-Limits <

S5 OPERATOR
<>>Range-Limits<<>

S6
@@

EW S
[Monitoring]

S7 EW S ^
[ NOT : Monitoring ]

S7 OPERATOR
?? [Stops]Monitoring ??

S5
+

EW S
[NOT : Monitoring]

S1
+

SENSOR
< Signal >

S1 EW S
> Signal <

S1
+

EW S
?SENSOR[Connected] ?

S7
+

EW S
? NOT :

SENSOR[Connected] ?

Integration of S1
into evolving DBT

 

Fig. 2. Integration of the augmented RBT for S1 into the evolving DBT 

EWS

Operator

Sensor AlarmDisplayPrinter

 

Fig. 3. CIN derived from EWS DBT in Figures 5 and 6 

another tree and grafting the two trees together at that point. This process generalises 
when we need to integrate N behavior trees. We only ever attempt to integrate two 
behavior trees at a time. In some cases, because the precondition for executing the 
behavior in an RBT has not been included, or important behavior has been left out of 
a requirement, it is not clear where a requirement integrates into the design. This 
immediately points to a problem with the requirements. In other cases, there may be 
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requirements/behavior missing from the set which prevents integration of a require-
ment. Attempts at integration uncover such problems with requirements at the earliest 
possible time. At the same time, such problems preclude automating requirements 
integration. Consider the case of integrating S1, S5, S6 and S7. It is not possible to 
integrate the initial literal translations for this set of requirements because they all 
have missing precondition information and a number of other problems. Each needs 
to be augmented as we have done above to make direct integration possible. The re-
sult of integrating the augmented requirements is shown in Figure 2. 

S6 OPERATOR
<>>Range-Limits<<>

S7 OPERATOR
?? [Stops]Monitoring ??

S7
-

OPERATOR
>>Range-Limits<<

S7
-

OPERATOR
?? < Range-Limits > ??

- OPERATOR
?? [Stops]Monitoring ??

 

Fig. 4. Operator Component Behavior Projected from Figures 5 and 6 and augmented 

Take the case of integrating S1 “the EWS receives a signal from an external sen-
sor” with the other requirements. The literal translation of this requirement gives no 
direct clue how to integrate it. Examining the requirement the first thing we notice is 
that it implies that the sensor must “send” the signal in order for it to be subsequently 
“received”. For this to happen the sensor needs to be connected. Including this behav-
ior still does not give us an RBT that can be directly integrated. To push the analysis 
further we must ask the question “what state must the EWS be in to receive a signal – 
the answer is, it must be in a “monitoring” state. When this precondition is added the 
augmented RBT for requirement S1 can be integrated with requirement S6 as shown 
in Figure 2. Similarly S7 integrates with S6. So what we see from the case of integrat-
ing S1 is that the process reveals problems with individual requirements that prevent 
direct integration. It also constructively provides clues about what preconditions are 
needed. Clearly, in this case the EWS is only in a position to receive a signal if it is 
monitoring and the sensor is connected. In some cases knowledge from a domain 
expert is necessary to resolve an integration problem. In other cases, temporal or 
causal information, and/or the states other components need to be in for integration to 
take place guide the decision. 

In Figures 5 and 6 (following the paper) we show the DBT that results from inte-
grating the RBTs that were produced by requirements translation of the sentences in 
Table 1, and then either direct integration or augmentation where needed to enable 
integration followed by integration. It is easy to see because of the tags, S1, S2, etc, 
where each functional requirement occurs in the integrated DBT. “@@” mark inte-
gration points. As well as finding integration problems, the translation and integration 
steps help us find and confront ambiguities and the use of aliases in the original state-
ment of requirements. 
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S5
OPERATOR

?? <>> RangeLimits <<>
??

S5
+

EWS
> RangeLimits  <

S5
-

EWS
[ NOT : Monitoring ]

S6
+

EWS
[ Monitoring ]

S7
C

OPERATOR
??  Stops_Monitoring ??

S1
+

SENSOR
< Signal >

S1
-

EWS
?NOT:

SENSOR[Connected] ?

S1
-

EWS
?? SENSOR[Connected] ??

S1
-

EWS ^
[ Monitoring ]

S2
EWS

[ Signal [ Processed ]]

S1 EWS
> Signal <

-
EWS
?NOT:

SENSOR[Connected] ?

- EWS^
[ NOT : Monitoring ]

S1
+

EWS
? SENSOR[Connected]

?

EWS
? SENSOR[Connected] ?

-
DISPLAY

??<<> WarningMessage
<>>??

- EWS^
[ NOT : Monitoring ]

DEFECT

DEFECT

 

Fig. 5. Top Half of the Integrated DBT for the EWS 

3.3   Inspection of the Integrated Design Behavior Tree 

The design behavior tree turns out to be a very effective representation for revealing a 
range of incompleteness and inconsistency defects that are common in original state-
ments of requirements. The Early Warning System case study has its share of incom-
pleteness defects.  

With the DBT there is the opportunity to do a manual visual formal inspection. Be-
havior Trees have been given a formal semantics [11] which has enabled us to build 
and use tools to do automated formal analyses as well. In combination, these tools 
provide a powerful armament for defect finding. With simple examples like the EWS it 
is very easy to do just a visual inspection and identify a number of defects. For larger 
systems, with large numbers of states and complex control structures the automated 
tools are essential for systematic, logically based, repeatable defect finding. 

The tool [9] we have built allows us to graphically enter behavior trees and store 
them using XML. From the XML we generate a CSP (Communicating Sequential 
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Processes) representation. There are several translation strategies that we can use to 
map behavior trees into CSP. Details of one strategy for translating behavior trees into 
CSP are given in [11]. One simple strategy involves defining sub-processes in which 
state transitions for a component are treated as events. The CSP generated by the tool 
is then fed directly into the FDR model-checker. This allows us to check the DBT for 
deadlocks, live-locks and also to formulate and check some safety requirements [11]. 
We are currently extending the tool to do a number of consistency checks on a DBT. 
One important check that we are able to do is a reversion “^”check where control 
reverts back to an earlier established state. What this check allows us to do is see 
whether all components are in the same state at the reversion point as the original 
state realization point (e.g., with the EWS we can check EWS[Monitoring] and 
EWS^[Monitoring] for consistency of all the component-states that define these two 
system state realizations). Such a consistency check reveals that the alarm is in the 
“Posted” state when reversion “^” takes place, whereas it is in the “Off” state when 
the EWS has just realized the “Monitoring” state. This identifies an inconsistency 
which we have corrected in the DBT by including ALARM[Off] in requirement S3. 

S2
+

EWS
?NOT:Signal[In_Range]?

S2
EWS

[ Signal [ Processed ]]

S2 EWS
? Signal[In_Range]?

S3 EWS
<WarningMessage>

S3 DISPLAY
<<> WarningMessage <>>

S3
+

ALARM
[ Posted ]

S4 TIMER
?? Time_Interval ??

S4
EWS

<Fault_Message>

S4
+

PRINTER
<<>Fault_Message<>>

S4
-

OPERATOR
>> RangeLimits<<

S4
-

OPERATOR
?? <RangeLimits>??

S4
-

EWS
>RangeLimits<

- OPERATOR
?  Stops_Monitoring ?-

OPERATOR
?  NOT :

Stops_Monitoring ?

- EWS^
[ NOT : Monitoring ]

S4
-

EWS ^
[ Monitoring ]

-
EWS ^

[ NOT : Monitoring ]
-

EWS ^
[ Monitoring ]

S4
+

EWS ^
[ NOT : Monitoring ]

S3
+

ALARM
[ off ]

DEFECT

DEFECT

DEFECT

DEFECT

DEFECT

 

Fig. 6. Bottom half of the integrated DBT for the EWS 
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Table 2. Missing Behavior found by Inspection of the DBT 

  1. The requirements do not say what to do if the sensor is not
      connected - presume must wait for connection event then
      start monitoring.
  2. Does not say what to do if signal is "in range" - presume just
      goes back to monitoring.
  3. Does not say what response operator needs to make if signal is
      not in range - presumed input new range limits.
  4. Does not say what to do after printing fault message - here have
      presumed it goes back to a "not monitoring" state.

 

As we mentioned earlier for systems like the EWS it is relatively easy to do a vis-
ual inspection to identify incompleteness defects. Table 2 lists four incompleteness 
defects identified by inspection of the DBT for missing alternative cases. 

What is interesting when a comparison is made with the Statechart design (see figs. 
B2, B3, and B4, ref [6]) for this system is that none of these issues are seen as “de-
fects” and yet the original requirements are silent in each of the cases. Perhaps some 
of these “defects” can be resolved as “commonsense”. However when all “gaps” are 
filled in this way it raises the chances of factoring in new requirements and new be-
havior that was not intended in the original requirements. What genetic design allows 
us to do is separate out what was actually stated and intended from other behavior that 
needs to be added in to make the behavior of a system complete. This latter behavior 
should be clearly delineated until it has been authorised by the stakeholders. 

There is also another significant difference between the Statechart design and the 
design that results from requirements translation and integration. What we find with 
the Statechart design is that things get “added in” to the design that do not appear in 
the original statement of requirements. For example, in the original statement of re-
quirements for the EWS there is no mention of the power going off and on and yet it 
appears in the design (see figs. B2 and B4, ref. [6]) without any comment. We have 
no issue with need for the power to be off and on. However when these sort of de-
sign/requirements decisions are done “on the fly” then traceability to original re-
quirements is lost. Also the chances of introducing something that was not intended 
are greatly increased. In applying genetic design to industry applications and compar-
ing the design documents produced using UML and other representations, time and 
time again we have observed discrepancies between originally stated requirements 
and what ends up in the design. Things get left out and things get added in with no 
acknowledgement of what has happened or why it has happened. Genetic design with 
behavior trees provides a practical way of controlling and avoiding such problems.  

The processes of translation, integration, and inspection of the DBT have revealed 
a number of defects and where they occurred. The incompleteness problems are iden-
tified in Table 2 and in Figures 5 and 6. The method has constructively guided us in 
the resolution of the missing requirements. To give some indication of the construc-
tive “pull” of genetic design, only approximately two-thirds of the behavior in the 
DBT came from the original requirements. The other third of the behavior was either 
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missing “-“ or implied “+” in the original set of statements we have used to guide the 
design. We have been able to systematically transition from a loose natural language, 
high-level statement of requirements to a complete and consistent integrated formal 
set of requirements that preserve the intent of the original requirements.  

Once the missing behaviors and other problems with the DBT have been rectified 
it is then possible to transition to the solution domain. A design behavior-tree is the 
problem domain view of the “shell of a design” that shows all the states and all the 
flows of control (and data), modelled as interactions without any of the functionality 
needed to realize the various states that individual components may assume. It has the 
genetic property of embodying within its form two key emergent properties of a de-
sign: (1) the component-architecture of a system and, (2) the behaviors of each of the 
components in the system.  

3.4   Architecture Transformation 

The component architecture, which is an emergent property of the DBT is described 
elsewhere [5]. We will use the Early Warning System DBT given in Figures 5 and 6 
to illustrate how this transformation is done and how the architecture is derived. In the 
DBT, a given component may appear in different parts of the tree in different states 
(e.g., the EWS component may appear in the Monitoring-state in one part of the tree 
and in the NOT : Monitoring-state in another part of the tree). To implement the ar-
chitecture transformation we need to convert a design behavior-tree to a component-
based design in which each distinct component is represented only once.   

This amounts to shifting from a representation where functional requirements are 
integrated to a representation, which is part of the solution domain, where the com-
ponents mentioned in the functional requirements are themselves integrated. A simple 
algorithmic process may be employed to accomplish this transformation from a tree 
into a network [3,5]. Informally, the process starts at the root of the design behavior 
tree (here EWS[NOT : Monitoring]) and moves systematically down the tree towards 
the leaf nodes including each component (e.g. OPERATOR is included next after 
EWS) and each component interaction (e.g. arrow) that is not already present. When 
this is done systematically the tree is transformed into a component-based design (in 
general a network) in which each distinct component is represented only once. When 
this algorithm is applied to the EWS DBT we get the Component Interaction Network 
(CIN) representation (Figure 3), which is simply a component dependency network 
for all the components in the requirements. Notice in the DBT that DISPLAY re-
ceives input from the EWS and produces outputs to OPERATOR and the EWS. 
These relationships (arrows) are retained in CIN below. The “double-headed arrow in 
the EWS – OPERATOR case indicates that control flows first to the OPERATOR 
(singled-headed arrow) then subsequently from the OPERATOR back to the EWS 
(double-headed arrow). Clearly the CIN shows that the EWS (in this case acting as 
the system component in the design) is the principal controlling and integrating agent 
for the behavior of the system. 

This CIN represents a “first-cut” at the architecture. We can often simplify the 
component interfaces. Space does not permit this process to be discussed here (see 
[3,5] for more details.  
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3.5   Component Behavior Projection 

In the design behavior tree, the behavior of individual components tends to be dis-
persed throughout the tree (for example, see the OPERATOR component-states in the 
EWS system DBT). To implement components that can be embedded in, and operate 
within, the derived component interaction network, it is necessary to “concentrate” 
each component’s behavior. We can achieve this by systematically projecting each 
component’s behavior tree (CBT) from the design behavior tree. We do this by essen-
tially ignoring the component-states of all components other than the one we are cur-
rently projecting. In addition we must preserve branching information at the time of 
projection. The resulting connected “skeleton” behavior tree for a particular compo-
nent defines the behavior of the component that we will need to implement and en-
capsulate in the final component-based implementation. To illustrate the effect and 
significance of component behavior projection we show the projection of the 
OPERATOR component from the DBT for the EWS in Figures 5 and 6. 

Component behavior projection is a key design step in the solution domain that 
needs to be done for each component in the design behavior tree. As part of the proc-
ess it is necessary to check the projected leaf nodes to see that they properly revert 
“^”. Here we need to add reversions “^” that requires that the operator will need to 
input new range limits after stopping monitoring. From this we see that projection 
helps to clearly identify and remove another class of defects from components. 

4   Comparison with Statecharts and Other Methods 

As Jackson wisely observed, new notations and new design methods are generally not 
enthusiastically received [7]. Such proposals are seen as just muddying the waters and 
tinkering around the edges. What we have tried to show in this treatment and the 
accompanying case study is that there are some significant differences and potential 
advantages of Behavior Trees/genetic design over the leading, and most mature state-
based design method - Statecharts[6]. Time, more widespread use, and independent 
validation of the method is needed to confirm these advantages.   

We summarize some of the major differences and advantages we claim for genetic 
design: 

• The most significant advantage of genetic design over Statecharts, UML and 
other methods is that it allows designers to focus on the complexity/detail of 
each individual requirement one at a time, while not having to worry about the 
detail in other requirements. That requirements can be dealt with one at a time 
(both for translation and integration) significantly reduces the complexity of 
creating a design. This, in turn, very significantly reduces the short-term mem-
ory overload problem that has plagued software development for so long. In 
fact, this approach to design actually amplifies our ability to deal with complex-
ity.  

• Another important advantage of genetic design over Statecharts and other meth-
ods is that the component architecture and the component behavior designs of 
all individual components in a system are both emergent properties of the de-
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sign behavior tree  that is constructed by integrating all the functional require-
ments of the system.   

• We have also shown using the case study, and elsewhere [4] that integration of 
functional requirements is a powerful constructive force for finding behavior 
gaps and other incompleteness and inconsistency defects with a set of functional 
requirements. Because the use of Statecharts does not have the same focus on 
defect detection it is unlikely to consistently deliver a comparable detection rate.  

• Statecharts and other development methods, also run a much greater risk of not 
preserving original intention because they do not employ a rigorous translation 
process to transition from an informal statement of requirements to a formal rep-
resentation. Evidence of this is seen in figs. B2, B3 and B4 of ref. [6]. We find a 
number of new terms (e.g., “setting up”, “idle”,” halt”, and so on) appear in the 
design figures that are not in the original statement of requirements (see Table 
1) while others like alarm “posted” disappear. This change in terminology con-
trasts with the focus in genetic design on direct translation of individual func-
tional requirements which maximizes the chances of preserving and clarifying 
original intent and guaranteeing traceability to original statements of require-
ments. Because the focus is on translation the genetic design approaches repeat-
ability in transitioning from and informal to a formal representation. Genetic de-
sign also provides a single integrated view of the requirements compared with 
the multiple views, (statecharts, activity charts and module charts) of the State-
chart method. The integrated view, we claim, makes it easier to see and find de-
fects either manually or using automated tools. It also makes it easier to see that 
original intent has been preserved in a design. For example, take the fourth sen-
tence in Table 1. “If the operator does not respond to this warning in a given 
time interval, the system prints a fault message on a printing facility and stops 
monitoring the signal”.  In the DBT (figs. 5 and 6) this requirement is directly 
traceable as the behavior fragment S4. In addition, the alternative case (not in-
cluded in Table 1), when the operator responds is also accommodated. In con-
trast, with the statechart (fig. B4, ref. [6]) we claim it is much less obvious that 
this original intent has been completely and accurately captured. 

• We have not emphasised it here but genetic design provides a formal, automat-
able method for mapping changes of requirements to changes in the architec-
ture, the component interfaces, and the behaviors of the individual components 
affected by the change [10]. This follows because the architecture and individ-
ual component designs are emergent properties of the DBT that is modified by 
the change in functional requirements of the system. 

• Genetic design also uses structure trees, composition trees and user-interface 
behavior trees to provide equally useful integrated views of all the data re-
quirements, the formal structural requirements and the interaction requirements 
that we almost always encounter when designing large-scale systems.  

• Behavior trees provide strong support for requirements elicitation and require-
ments analysis. They can be used equally well with broad user requirements, or 
a detailed SRS, or to formally model an individual scenario. The method does 
not however depend on requirements being nicely structured.  
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5   Conclusion 

Amplification of our ability to deal with complexity is the single most important prob-
lem to overcome in order to advance the practice of software engineering. Genetic 
design has the potential to make an important contribution to solving this problem 
because it allows us to consider, translate, and integrate only one requirement at a 
time. Application of the method to the Early Warning System Case Study has demon-
strated the constructive power of requirements integration as a means for complexity 
control and the early detection and resolution of significant problems with original 
high-level statements of requirements. The case study will allow others to benchmark 
genetic design against Statecharts, the leading state-based design method. 

Genetic design has been successfully applied to a diverse range of real (often large) 
industrial applications. In all cases the method has proved very effective at defect 
detection and in the control of complexity (in larger systems there can be layers of 
behavior – the method easily accommodates this). We expect the utility of the method 
will increase as we enhance the tool we are building to support the method.  
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Abstract. Story Driven Modeling (SDM) is a technical software devel-
opment process employing UML-based modeling in all project phases,
including implementation and test. SDM may be considered as a simple
version of Model Driven Software Development as proposed by the OMG.
SDM uses scenarios in analysis and test phases and provides practical
guidelines for the synthesis of statecharts and method behavior specifica-
tions. SDM proposes object games for refining textual use case scenarios
into so called story boards, i.e. sequences of UML interaction diagrams.
From these story boards the modeler derives class diagrams, UML-based,
operational behavior specifications and UML-based JUnit tests. The code
generators of the Fujaba CASE tool turn this automatically in a Java im-
plementation and run the JUnit tests. This paper is a case study applying
SDM to the Paderborn shuttle system. This case study exemplifies how
applications that deal with complex object structures may be modeled
using SDM.

1 Introduction

This paper describes how Story Driven Modeling can be applied to the Paderborn
shuttle system case study, cf. [SEUPB04]. It is a major extension of [DGZ04].
While [DGZ04] focuses on the derivation of behavior specifications only, this
paper has room to cover the whole SDM process for the case study. Story Driven
Modeling (SDM) aims to provide a simple process for the development of object-
oriented software where practical guidance for the actual modeling activities of
each development step is provided, cf. [KNNZ00, Zü01, DGMZ02, DGZ02].

SDM proposes an agile software development process where each iteration is
organized in the following steps:

1. requirements elicitation employing textual use case scenarios
2. requirements analysis using object games
3. requirements elaboration using story boards
4. derivation of class diagrams
5. derivation of automatic JUnit tests
6. design of method behavior using story diagrams

S. Leue and T.J. Systä (Eds.): Scenarios, LNCS 3466, pp. 109–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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7. generation of implementation using Fujaba
8. automatic scenario validation

In the following sections we describe these activities step by step. Then we
discuss related work and sum up.

Fig. 1. Use case diagram with textual scenario

2 Requirements Elicitation

The Paderborn shuttle system case study [SEUPB04] provides a pretty good tex-
tual requirements description highlighting certain execution steps of the desired
system, e.g. in section 2 of [SEUPB04] you find:

2.2. Orders
Orders are made known to all shuttles by a broker. An order defines
start and destination stations as well as the allowed time for completion.
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The deadline is derived from the time of acceptance of an order and
the predefined processing time, which begins at the time of acceptance.
Additionally, an order has a certain size, namely the number of people
wishing to travel. Orders will be paid for by the passengers either by
credit card or invoice. . . .

This kind of requirements description is pretty common. However, in our
approach (as in many others) scenarios play a central role. Thus SDM proposes
to turn requirements as given above into textual use case scenario descriptions.
Such textual use case scenario descriptions should focus on typical collaborations
of system constituents in response to use case invocations. As usual, such an use
case scenario consists of a description of the start situation, an invocation, an
elicitation of all executed steps and a description of the resulting situation, cf.
Figure 1.

According to our experiences, developers agree on such textual scenario de-
scriptions very easily. However, textual descriptions remain very vague and even
if all stakeholders are happy with some scenario description, later refinement and
formalization of the scenario will most likely reveal severe misunderstandings and
disagreement. Thus, textual requirements descriptions are just not enough for a
sufficient modeling of requirement scenarios.

3 Requirements Analysis with Object Games

To elaborate the use case scenarios, the developers may perform a so-called
object game. In the object game the steps of the textual use case scenario are
considered one by one and each is modeled using an object or collaboration
diagram. This may be done in a team session. The developers may use a white
board. The steps of the scenario are protocolled as sequences of object diagrams,
e.g. using a digital camera or a digital smart board.

Figure 2 shows one snapshot from such an object game for our case study.
It focuses on the problem of re-scheduling orders in case of a new order. In the
upper half, the track system is outlined. In the lower part there are already two
orders o1 and o2, scheduled in that order. Now a third order o3 arrives. Order o3
starts at station B which is just the station next to the shuttles current position
A. Thus it seems efficient to pick up order o3 first and to re-schedule orders o2
and o1 in that order. The load (l) and unload (u) links in the route lists at the
bottom show the visiting order and tasks for the old and the new route.

In addition to the depicted situation, we considered scenarios with overlapping
orders, orders in large distances, and routes with side trips e.g. resulting if order
o3 targets station E instead of D. After all, this object game gave us a very good
idea of the object structures and algorithms we wanted to employ in our system.

In SDM, the role of the object games is to change the perspective from ”I
am executing this scenario step” to the perspective ”The computer executes this
scenario step”. This change of perspective requires to model how the information
required for a certain step is stored / organized in the computer and how the
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Fig. 2. Object Game Snapshot

desired program may work on this data. In addition, this change of perspective
and the use of semi-formal UML diagrams implies a more precise description of
data and computation steps than textual scenarios. According to our experience,
this more precise, semi-formal scenario description already reveals a lot of severe
misunderstandings between different stakeholders. This may result in heated
discussions within the development team. However, it is very positive if such
misunderstandings are resolved in such an early stage of the project.

The object game may also involve domain experts and customers that may
have little skills in object-oriented modeling, UML, or programming. To help
such people to participate in the discussion, on the white board objects may be
depicted using icons or symbols from the application domain. For example in
Figure 2 we used a small locomotive to depict a shuttle. Stations are depicted
as dots on some kind of map. Similarly, we could have used a document icon to
represent orders. According to our experiences, such little adaptions enable non-
experts to participate in object games and to communicate with the development
team about their domain knowledge.
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We use such object games with great success with highschool students in their
first programming course and we have very encouraging experiences from several
research and some industrial projects. In one industrial project dealing with the
configuration of the electrical elements of a car, our partners were two electrical
engineerswitha lotofdomainknowledgebut littleprogrammingandnoUMLskills.
After some days of collaboration, the electrical engineers were able to participate
in our discussions and after a week they came up with their own object diagrams
in order to explain certain design aspects to us. In this project, object games have
been a tremendous help for the transfer of domain knowledge.

SDM usually employs object or collaboration diagrams for the object games.
This emphasizes the modeling of data. In case of simple or fairly static object
structures, sequence diagrams may be used, similarly.

4 Story Boarding - Refining Use Cases

The object game results should now be entered into the Fujaba CASE tool as
so-called story boards. A story board is a sequence of UML collaboration diagrams
that show the changes of the object structure in this scenario comic strip alike.
Turning object game snapshots into story boards results in a clean, printable,
digital representation of the scenarios and it enables consistency checks and tool
support for subsequent steps. Usually, during this step many details are added to
the scenarios as e.g. object types, link names, attribute names, etc. In addition,
the elaboration of story boards frequently reveals missing intermediate objects or
functions or attributes or links that enable or facilitate the modeling of the desired
behavior. Figure 12 shows a story board for re-scheduling a route for two offers.

The first activity of the story board in Figure 12 describes the start situation
of the corresponding scenario: The Shuttle s1 is located at Station st1. The
shuttle currently travels route r1 which visits the stations st1, st2, and st3 in
that order. Note, we visualize the order of the visits link by ”next edges” between
adjacent links. The shuttle has a pending order o1 from Station st2 to station
st3. The broker b1 has a new order o2.

Note, Fujaba allows to use icons as graphical stereotypes within object dia-
grams. As in object games this is especially important for domain experts and
customers that participate in this phase. In order to save some space this paper
employs such graphical stereotypes only in the first activity of Figure 10.

To allow a mapping of story board activities to the textual use case scenario
steps, each story board activity contains the step number and the full step descrip-
tion as a comment at the top of the activity, cf. Figure 12. (Using Fujaba, changes
to these texts are automatically propagated to the textual use case description.)

The second activity, i.e. the invocation step should always model the invo-
cation of the scenario. In our approach this is usually a collaboration message
/ method call. Here, the method makeOffer(o2) is called on shuttle s1. Note,
the second activity shows only a small cutout of the object structure of the
previous step. This is just a change in perspective and not a deletion of the
omitted objects. In story boards, modifications of elements is explicitly shown
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using  create! and  destroy! stereotypes or attribute assignments, cf. step
1 and 2 of Figure 12. In case of large object structures each step may focus on a
different cutout of the scenario. Uninteresting objects from previous steps may
just be omitted, not yet considered objects may be included. Objects taken over
from a previous step are represented giving their name only. Objects that have
not yet been shown but that appear the first time in this step are represented
giving their name and their type. In Figure 12 the latter notation is used in the
start situation, only.

In the first scenario execution step, i.e. in the third activity of Figure 12, a
new Route r2 is created. Note, that creation and deletion of objects / links is
modeled in Fujaba using the stereotypes  create! and  destroy!. Object r2
is used to calculate a new route that includes the new order. A comparison of the
costs of this new route with the previous route serves as basis for the calculation
of an offer. Station st1 is marked as first visit, as the shuttle is currently located
at this station. All other start stations are marked as possible next stations via
possibleStations links.

In this first analysis, we use a simple shortest-travel-first strategy for our
routing. Therefore, in step 2, we call method chooseNearest() on the new Route
r2. This shall select the possible station that is nearest to our position at this
point of the tour. That station is removed from the list of possible next sta-
tions and appended to the list of visits, cf. the corresponding  destroy! and
 create! markers in step 2. At station st2 we plan to load offer o1. Then we
will have to travel to the target station of o1. Therefore station st3 is added to
the list of possible next stations. In addition we update the cost of route r2 to
10 (the distance to be travelled, not shown in the figure) times the costPerMile.

Step 3 is very similar to step 2. In step 4 station st5 is chosen, where offer o2
is delivered. Here, we do not need to add a new station to the route. After the
new route has been calculated, step 6 creates the offer for the broker. We have
chosen to calculate the price from the difference between the new and the old
route plus 10% gain plus some fixed price. Note, that we do not yet take shuttle
capacities into account.

In the last step of this scenario, the broker is notified about the offer. It is
now the brokers turn to decide which offer it accepts.

The story board for use case make offer employs method chooseNearest to
determine the next station to be visited. Due to the complexity of this method,
we decide to create a sub use case for it and to analyze it with another scenario
and story board, cf. Figure 13.

The start situation of Figure 13 focuses on a number of possibleStations for
route r2. Note, compared to the previous story board we have added some other
station st6 to create a more interesting scenario. We assume, that each pair of
stations is connected by a direct track. If this is not the case in the original
topology, virtual tracks may be added as short-hands for sequences of physical
tracks, easily. Thus, for each possible station method chooseNearest visits the
track connecting it to the last visited station st1. If the current station is closer
than all previous candidates, it is marked by a nearest link and the minDistance



Applying SDM to the Paderborn Shuttle System Case Study 115

is updated. This is illustrated by steps 1 through 3. Step 4 appends the nearest
possible station to the route and removes it from the set of possible stations.

In this paper we show only one story board or scenario for each use case.
Generally, there may be multiple scenarios for each use case covering different
cases for the use case behavior. As story boards are based on activity diagrams,
they could also be used to model branches or loops. However, we made the
experience that concentrating on one example run is much easier and is very
helpful especially for beginners. This is an important property e.g. for customers
and newcomers to the project. So, our approach suggests to use a set of simple
alternative scenarios instead of a small number of complex activity diagrams.

In SDM, each use case is mapped to exactly one method that is invoked in
order to trigger its execution. This method has to realize the use case functional-
ity. However, a use case may include user interaction or it may utilize other use
cases. In our approach, one use case uses or includes another use case, if its story
board calls the method that realizes the other. This information may be derived
from the story boards belonging to a use case and it may be depicted in the use
case diagram as  includes! relation, cf. Figure 1. Similarly, use case methods
might be subscribed as listeners to some other use cases and these listeners might
be invoked at certain extension points. Such a mechanism could be shown as a
 extends! relation between use case. So far, SDM uses use case relationships
via method invocations in story boards, only. Explicit use case relations in the
use case diagram are future work. The  includes! relation in Figure 1 is only
a fake showing our future vision.

Object games and story boarding are quite similar activities. However, object
games are more informal and better suited for team discussions while story
boarding is usually done with the Fujaba tool that requires a more formal use
of object diagrams. Especially, Fujaba asks for types for all elements of a story
board. The corresponding Fujaba dialogs show a list of already introduced class
diagram elements. The developer may either re-use an existing type or add a new
one on-the-fly. This actually creates a first version of a conceptual class diagram
for the desired system. How this first class diagram is completed and refined is
discussed in section 5.

In our projects, we develop the first object games and story boards in team
sessions. After that, all team members have a detailed common understanding of
the design and implementation concepts of the desired system and of the role of
the different class diagram constituents. Now, the team members may work on
different use case concurrently in an iterated, agile development process. Fujaba
multi user support may be used to synchronize concurrent changes to the differ-
ent project parts and especially to merge changes in the common class diagram.
Used in this way, the common class diagram builds a team wide vocabulary of
shared types.

SDM derives automatic JUnit tests from the story boards, cf. section 6. This
supports a test-first principle as utilized in most agile processes. As for other
agile processes, this approach creates the question of completeness for scenarios.
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Do the scenarios and tests cover all important cases or are there still test cases
missing? We will comment on this problem at the end of section 7.

To sum up, according to our experiences object games and story boards
are excellent means for the refinement of textual requirements and for design
discussions. Starting from textual use case scenarios enables this phase to focus
on one scenario step at a time. Using icons from the application domain facilitates
to involve domain experts and customers in this phase. In our projects, this
worked great even with customers having no or little programming and modelling
skills (if they are smart and have certain technical understanding). The effort for
creating the story boards pays by the derivation of automatic JUnit tests that
drive the agile development process. At the beginning or when non-IT persons
are involved, one might develop pretty detailed story boards as e.g. the one for
selecting the nearest station in Figure 13. More experienced developers tend
to use more coarse grained story boards and they focus on the more complex
scenarios. Such developers might have skipped the story board for selecting the
nearest station or they might have combined several of its steps into a single one
since the intermediate steps are clear for them. However, also for experienced
developers, object games and story boards are a extremely valuable means for
design discussions. In our group, we use them every day.

5 Derivation of the Class Diagram

After having understood the problem during the object games and having pro-
tocolled and elaborated it using story boards, the next phase is the systematic
derivation of class diagrams and of behavior specifications. According to our
experiences, usually most of the important design decisions are already made
during object game and story boarding. In addition, our story boards already
employ typed object diagrams and in Fujaba, the class diagram elements are
introduced on-the-fly during story boarding. Thus, the derivation of a first class
diagram is usually very straight forward, cf. Figure 3.

Of course, a class diagram derived by this approach still needs refinement.
For example the on-the-fly derivation of class diagram elements does not create
any kind of inheritance hierarchy for the employed classes. Thus, usually the
user will have to refactor the derived class diagram e.g. by moving common
properties of multiple classes into some super class. Design patterns like the
Composite pattern or Observer pattern or State pattern may be introduced
here, too. However, many of these patterns become evident already at the object
diagram level. For example, if we use a delegation mechanism or a proxy object in
our design, we introduce and discuss this already in the story boards and refactor
the class diagram, accordingly. Note, during the analysis phase one may develop
story boards on a more platform independent level. In later phases platform
specific refinements as proxies or facades may be added to the design. This may
be done in the class diagram as well as in the story boards.

One may worry about the quality of class diagrams derived on-the-fly. Ac-
tually, we discuss a lot of design issues during story boarding and during story
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Fig. 3. Derived class diagram

board refinement. Once a design decision is made, the way one edits the class di-
agram does not matter that much. It probably depends on the problem, whether
it is more appropriate to discuss a design issue using an object diagram or a class
diagrams. For scenario related issues, object diagrams may work, for structural
issues like the introduction of design patterns, the class diagram may be better.
Sometimes you may need both views. However, from our teaching experiences,
we observed that the quality of the class diagrams has been increased dramat-
ically in our student courses, when we have introduced story boarding in the
development process.

6 Derivation of Automatic JUnit Tests

When a scenario has been modeled by a story board, Fujaba provides a command
to turn it automatically into a simple JUnit test for this scenario, cf. [GZ03].
Basically, the generated test consists of three major parts. The first part is
derived from the modeled start situation of the story board. The generated test
operation just creates a similar object structure at runtime. The second part is
the invocation of the operation to be tested. The third part is derived from the
last activity of the story board that is supposed to model the object structure
that results from the scenario execution. We turn this into an operation that
compares the object structure resulting from the test execution with the object
structure modeled as the result of the scenario.

Using this test generator for the story board of Figure 13 results in a new
test class. This test class contains the setUp() method shown in Figure 4. This
method creates the object structure as modeled by the first step of the scenario
(cf. Figure 13). For technical reasons every object of the start object structure
is linked to the test object as well.
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Fig. 4. Setting up the test object structure

Fig. 5. The test method

The setUp() method is called by the JUnit framework every time before a
test is executed. A test method then just has to perform the invocation and to
assert that the result situation is reached. Because of the similar notations of
scenario and behavior specifications, we just have to copy the invocation step
from the story board to the story diagram of the test method as done in Figure 5.

If a test fails, we want to enable the developer to find out easily which step
of the scenario has been executed and which one has not. Therefore, we generate
assertStepXY() checks for every step of the scenario.

In this example, the check whether or not the result situation has been reached
is thus encapsulated in method assertStep5(). Accordingly, the generated JUnit
test method contains an assertStep5() call in its second activity, cf. Figure 5.

The assertStep5() method contains a copy of the result situation in the story
board, as shown in Figure 6. In Fujaba, this object diagram is considered as
a pattern to be matched against the actual object structure. This matching
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Fig. 6. Testing result situation

performs the wanted check. We use a special code generation flag to enable
JUnit compliant checks in those methods. This way the developer can easily
identify errors within the JUnit environment.

We have also added tool support for mapping JUnit error messages back to
design level, see [Gei04]. So, if a test fails, it is visualized which part of the result
situation is not recognized correctly.

7 Derivation of Method Behavior Using Story Diagrams

SDM uses the following guidelines for the derivation of method bodies from story
boards:

1. identify all usages of a method in the story boards
2. for each usage:

(a) identify all effects of this method call. These are changes to the object
structure or subordinate method invocations. These effects may be shown
in the current activity and in following activities. In case of subordinate
method invocations, exclude effects caused by these methods.

(b) identify the minimal context required for this method call to be able to
execute the identified effects.

(c) copy the minimal contexts to the state or activity diagram modeling the
behavior of the considered method.

(d) identify “similar” activities within the method body and try to merge
them.

(e) Resolve conflicts in the resulting control flow by adding appropriate
branching conditions.

3. add loops and branches to cover the general case.
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The result of this approach will be a UML interaction diagram, a so-called
story diagram, that specifies the behavior of this method. The Fujaba CASE tool
then generates executable Java code out of the class diagram and out of these
method body specifications, cf. [Fu02, FNT98].

Using our approach for method chooseNearest(), we first have a look at the
scenario from Figure 12. The first usage of the method chooseNearest() appears
in the 2. step of the story board. In that step station st2 is appended to the visits
list and the end station of the corresponding order is added to the set of possi-
bleStations. We decide that these modifications have to be executed by method
chooseNearest. We now copy the minimal context needed for this modifications
to the method body of method chooseNearest(). These are obviously the routing
object and the effected order and stations and the connecting links, cf. the left
activity of Figure 7. Note, that we have renamed the objects to indicate that we
are now no longer dealing with an example scenario but with the general case.

The call of method chooseNearest in the 3. step is very similar to the one
discussed above, so we do not deal with it here. But in the 4. step the derived
story diagram does differ because we are now dealing with a station which is an
end station of an offer and thus we do not need to add a new station to the set of
possibleStations. Copying the minimal context of this method execution results
in the right activity of Figure 7.

Note, now the activity diagram for method chooseNearest contains a con-
flict: The start activity has two outgoing transitions without conditions. Such
conflicts arise, if the same method invocation shows different effects in different
story boards or story board steps. Now the developer has to decide whether

Fig. 7. Derived method body of method chooseNearest()
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Fig. 8. Derived method body of method chooseNearest()

the two story board steps use the method inconsistently. In this case the story
boards would need to be corrected. Otherwise, the method is called in two dif-
ferent situations and these differences need different handling in the method
implementation. In this case, the developer has to specify branch conditions
that choose the correct behavior.

In our example, the right activity of Figure 7 is somehow a sub-pattern of
the left activity. The effects of the right activity are always needed. And if the
selected station is the start station of an order, the additional effects of the left
activity are required. The resulting reorganization of the method body is shown
in Figure 8.

The so derived method body does not yet model the desired behavior. The
problem is that any of the possible next stations might be chosen to be the
nearest one. At this point, the developer should recognize, that the story board
in Figure 12 does not model how the nearest station can be found. Now the
developer has to go back to the story boarding phase and to add a story board
that closes this gap. The story board in Figure 13 is such a refined story board.

Using the same guidelines as above, we derive the story diagram shown in
Figure 9. Here the developer has to recognize, that we loop through the set
of candidates. In story diagrams, we use for-each activities (with two stacked
borders) to specify loops, cf. the first activity of Figure 9. Such a for-each activity
is executed for every possible match of the contained object pattern.

Next the developer has to recognize that in the loop the visited station is
handled in two different ways: Either it is ignored or if the visited station is
closer than the current minDistance, it is marked by a nearest link and the
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Fig. 9. Final version of method chooseNearest()

minDistance is updated. This condition and the desired effects are modeled by
the second activity of Figure 9.

The last step of the story board in Figure 13 can be merged with the first
activity from Figure 8. Figure 9 shows the resulting method specification. This
specification finally has the desired behavior. From such a story diagram Fujaba
generates executable Java code.

We may now consider the makeOffer operation called at the beginning of the
story board of Figure 12. The 1. step of Figure 12 creates a new route and adds
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some possibleStations to it. While this step looks simple, it is actually pretty
complicated to determine the set of possibleStations. The example adds station
st2 as the start station of a pending order and station st4 as start station of
the new order. These two cases are covered by the first and second activity of
Figure 10. Note, for the second activity we directly identified that there might
be multiple pending orders and that we should use a for-each activity to loop
through all of them. Then we went on with the other steps of the story board.
After finishing a first version of the method we applied a simple check list to it
containing items like:

– normal activity: does it always match and if not is a failure handling mod-
eled?

– branch activity: are all cases considered?
– for-each activity: does it iterate through all desired matches?
– for-each activity: does it apply to undesired matches?

In this example, the last check item uncovered that there might be an order
that has already been loaded and that is pending just because it still needs to be
delivered. In that case, we must not add the start station of the corresponding
order but its end station. Thus, we had to split the second activity of Figure
10 and we added the third activity handling already loaded orders. Note, due
to our experience, reviewing story boards and graphical method specifications
is much easier than reviewing plain textual use case scenarios and plain source
code. Generally, good readability is a major strength of our notation which is of
high value for all kind of maintenance activities.

The derivation of the remaining elements of Figure 10 is left as an exercise
for the reader.

We admit that the derivation of method body specifications is already close to
programming. However, we claim, that it is done on a higher level of abstraction.
In addition, the closeness of story boards and method specifications and the good
readability of our notation facilitates this step, considerably. We do not yet have
clean statistical evidence, but due to our experience we estimate that in the area
of complex object structures the realization with story diagrams is about five
times faster than conventional programming. This speed up is mainly achieved
by the readability of our specifications that facilitates maintenance and peer
cooperation.

We also have some experience with an industrial project done in C#. Since
Fujaba currently generates Java, only, this project used Visio to create story
boards and then the methods were derived in C# directly. In that project, the
participants credited that story boards were extremely helpful for them. In addi-
tion, the story boards turned out as a very good basis for direct implementation
of the employed methods in a conventional OO programming language, too.
Thus, our approach may be used independent from the Fujaba CASE tool, too.

Note, story boards are no general testing method. They drive the behavior
specification according to the test-first-principle of agile processes but they do
not claim to achieve full test coverage. Actually, we observe that experienced
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Fig. 10. Derived method body of method makeOffer()
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Fig. 11. JUnit test run directly after story boarding

developers tend to produce fewer story boards with fewer steps. However, these
smaller story boards then contain much more interesting cases. For example, a
really experienced story boarder would probably have included an end station in
the step 1 of the story board for method chooseNearest, directly. Thereby, the
method specification would have addressed this case directly, without a review
and without testing.

8 Generation of Implementation Using Fujaba

At this point, we are already able to generate code for the whole system, cf.
[Fu02, KNNZ00]. Note, Fujaba generates not only code from class diagrams but
also from behavior specifications and from the JUnit test specifications. Since
all methods have been specified by story diagrams, no manual coding in some
programming language is required.

Note, measured in code size Fujaba generates about 5 to 10 pages Java code
from about 1 page story diagram. While hand-written code would probably be
somewhat shorter, we still claim that this indicates that story diagrams are on
a somewhat higher level of abstraction compared to usual code. However, much
more important is our experience, that one page story diagrams are much easier
to read and to understand than several pages of Java code.

9 Automatic Scenario Validation

Directly after story boarding, JUnit tests may be derived and run. The result
of such a run is shown in Figure 11. In that situation the JUnit test should fail
since the implementation has not yet been done. Now the test may be used as a
driving force for method derivation.
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Note, the JUnit tests may be combined with a code coverage analysis. This
coverage analysis may reveal certain parts of the implementation that are not
required for the story board scenarios. This might be a hint on additional cases
that have already been considered in the implementation but that are not yet
documented by corresponding story board scenarios. Such a mechanism may
provide us with some notion of completeness for story board documentations.
This topic is a part of our future work.

10 Related Work

Our object game is comparable with CRC card approaches, see e.g. [Bo91].
However, the outcome of a CRC card session is some kind of class diagram. The
outcome of our object games are sequences of object diagram snapshots that
then are turned into story boards. Actually, CRC card approaches go through
scenarios, too. However, they do not protocol the sequence of executed steps or
the object structure evolution but CRC cards record only the employed classes,
relations, and methods. Thus in CRC card approaches, the most valuable infor-
mation get lost.

Several other approaches provide sophisticated support for turning sequence
diagrams or MSCs into statecharts, cf. e.g. [WS00, WKS03, KMS01, KGSB99].
These approaches use sequence diagrams to describe scenarios. From these se-
quence diagrams statecharts are derived. While these approaches provide a much
better automating, they do not deal with complex object structures that evolve
dynamically. In the example of this paper, the actual topology plays an impor-
tant role for the routing algorithm. For us, story boards and story diagrams are
more appropriate in order to represent this topology and to reason about it. In
general, above approaches and our approach complement each other and one
may use the one which fits the problem best.

The Catalysis approach uses object diagrams as pre and post conditions for
the characterization of use cases and of methods, too, cf. [DW99]. Actually,
many ideas and even many notions are close to certain notions of our approach.
However, Catalysis uses object diagrams as pre and post conditions more in
the traditional sense of algebraic specifications which corresponds to the idea of
design-by-contract proposed e.g. in Eiffel. The contracts set up the framework
for method implementation. However, the developer gets no practical guidance
for method implementation. Intermediate steps and algorithmic aspects are not
addressed by definition. We felt, that support for the actual method derivation
was desperately missing and thus story boarding deals with intermediate steps
and algorithmic aspects more explicitly. This allows to provide more input for
the derivation of methods behaviors. For large systems, both approaches might
actually be combined. First, more generic use cases are considered and graphical
contracts are derived. Second, the algorithmic aspects may be studied by refining
the graphical contracts into story boards.

There are several other approaches which deal with scenario-based testing.
The Rational Quality Architect [RQA02] for example uses sequence diagrams
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to define scenarios. From these sequence diagrams they generate test cases and
test drivers. At test runtime, the signal flow is traced and protocolled using a
sequence diagram which is then compared to the scenario sequence diagram.
Again, the use of sequence diagrams make sense when dealing with complex
signal flow, like e.g. in protocols. We think that for modeling applications with
complex object structures, story boards are better suited. Another benefit of
story boards is, that the developer may model complex post conditions using an
object diagram, see e.g. the result situation of Figure 13. This is hardly done
with sequence diagrams. More likely, one would use OCL expressions for this
purpose. Here, we claim, that our graphical notation is easier to read than OCL
post conditions.

The SCENT approach [RG00] derives statecharts from natural language sce-
narios. Test case generation is then done using path traversal within these stat-
echarts. Again this approach lacks of support for complex object structures. In
SDM, a scenario is in most cases just a sequence of activities. When deriving the
behavioral specifications all these sequences are merged together into a “system
statechart”. So, path analysis techniques might be useful in SDM to identify
paths in the implementation not yet covered by scenarios to achieve complete-
ness. This is future work.

The TOTEM approach [BL01] uses again sequence diagrams for specification
of scenarios. The test generation also takes inter-scenario relationships modeled
in use case diagrams into account. As mentioned in section 4, SDM models inter-
scenario relationships implicitly in the story boards by calling the methods of
other scenarios. Unfortunately, this relationships are not yet considered at test
generation.

Fujaba’s graph transformations as used in the story diagrams are inspired by
the ones used in PROGRES [Progres]. Actually, PROGRES is a predecessor of
the Fujaba system and many graph transformation concepts have been carried
over to Fujaba. However, the PROGRES process [SWZ95] (co-developed by one
of the authors) does not have an explicit scenario analysis phase like our object
game and story boarding activities. In this sense, SDM is a further development
of the PROGRES process.

11 Summary

This paper introduces Story Driven Modeling (SDM) as systematic software de-
velopment approach. Instead of CRC cards, SDM employs so-called object games.
The steps of the object games are protocolled as so-called story boards. From these
story boards, the developer derives the class diagram. Then behavioral specifica-
tions are derived by analysis and comparison of all story boards. Finally, our CASE
tool generates executable code out of the derived class diagram and the behavioral
specifications. In addition, story boards are turned into automatic JUnit tests.
These JUnit tests ensure that the derived behavior specifications actually realize
the provided use case scenarios. For all these steps, SDM tries to provide practical
guidance for the actual software development work.
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SDM has been used with great success in two projects with Gauss Highschool
Braunschweig and in two courses at University of Kassel with 40 and 60 students,
respectively. In addition, we have done a first project with an industrial partner
and we use it in a research project for car industry these days. The results
of these experiences are very promising. Especially, the object games and the
story boards turn out to be an ideal way for requirements analysis and early
design considerations. One of our industrial partners has been using CRC cards
before. After the first project using object games and story boards instead, they
instantly decided to make these the new standard for their work, cf. [Czok04].

At University of Kassel, we use SDM for the development of Fujaba itself. At
our group we deal with about one million lines of the Fujaba implementation.
We also deal with a lot of third-party tools, libraries and code. Even for this
fairly large system, we use object games and story boards with great success for
the analysis of new or changed functionality and how it might be blended with
the rest of the tool. To be honest, method specification with story diagrams is
not always possible, since the reverse engineering capabilities of Fujaba do not
yet fully address method bodies. Thus, old methods are modified at code level.

Asnext steps,wetry toprovidemore sophisticatedtool support forourapproach
within the Fujaba CASE tool. Fujaba supports our story board and story diagram
notation and code generation for the latter. We plan to extend this by an analysis
component that looks for method calls within story boards that have not yet
contributed to the derivation of method bodies. Similarly this analysis component
shall point to not yet included invocations of a currently considered method within
differentstoryboard(activitie)s. Inadditionthecopyingofminimalcontextsshould
be supported as well as the identification and merging of equivalent states. In the
reverse direction, one may start with a story diagram or one may modify a story
diagramandFujabashouldeither support thederivationofmeaningful storyboards
or support the adaption of story diagram changes within existing story boards.
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A Story Boards

Fig. 12. Story board for the makeOffer scenario
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Fig. 12. (continued)
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Fig. 13. Refined story board



Applying SDM to the Paderborn Shuttle System Case Study 133

Fig. 13. (continued)
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Abstract. The Use Case Map (UCM) scenario notation has some strong
features related to rapid capture and evaluation of requirements mod-
els. In this paper, we explain how a UCM model was developed from a
requirements oracle case study: the Autonomous Shuttle Transport Sys-
tem. We further consider establishing links between scenario elements
and other types of requirements. These links, which can be supported by
requirements management tools, are useful to maintain both the scenar-
ios and requirements during their evolution. We also demonstrate how
simple performance models generated from UCMs may impact high-level
requirements and architectures.

1 Introduction

Requirements, which are expressions of ideas to be embodied in the system or
application under development and the conditions under which it will operate,
are often collected in unconstrained forms including text, diagrams, tables, and
equations or logical formulae. Requirements analysis then uses various tech-
niques to investigate the consistency, completeness, feasibility, and consequences
of the requirements. Nuseibeh and Easterbrook discuss integrated requirements
engineering, combining a variety of techniques with automated tool support for
effective requirements management [17]. They identify the need to move from
contextual enquiry to elicit requirements, to more formal representations for
analysis.

One form of requirements may be scenarios, which describe sequences of op-
erations to be carried out in response to given events, requests, or interactions.
Scenarios may be used to drive the elicitation and development of requirements,
to refine requirements stated in other ways, and to connect other requirements
whose relations would be otherwise unapparent. Lamsweerde gives a thorough
discussion on the relationships between goals and scenarios, between informal
and formal methods, and between scenarios and other requirements models [14].
Like many others, he noted that scenario specifications are incomplete and can-
not be used as a substitute for all types of requirements. Various non-functional

S. Leue and T.J. Systä (Eds.): Scenarios, LNCS 3466, pp. 134–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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requirements, goals, quality attributes, and informal annotations are found in
most requirements documents.

In order for scenarios to be used in cooperation with general requirements,
they must be connected to external requirements in a way that supports trace-
ability, navigation, and analysis. This paper presents an approach where Use
Case Map (UCM) scenarios are constructed from an informal collection of re-
quirements. UCM scenario elements are then imported into a popular require-
ments management system (RMS), namely Telelogic DOORS [21], and linked to
other types of requirements. UCMs are abstract scenarios that are close to the
requirements abstraction level, and they contain many types of elements that
are potentially traceable to other types of requirements.

Scenario management and scenario evolution, which are discussed in their
largest context by Jarke et al. [13], face the issue of maintaining traceability of
scenarios that relate to each other and that evolve over time. To avoid an explo-
sion in the number of individual scenarios describing a complex system, several
approaches have been developed to capture common parts (often called episodes)
and describe interdependencies through relationships such as precedence, alter-
natives, inclusion, extension, usage, etc., while at the same time improving con-
sistency and maintainability. Breitman and Leite provided an extensive case
study on scenario evolution based on such relationships, and they identified the
need to develop suitable management systems that would take into considera-
tion scenario relationships [8]. Interestingly, Use Case Maps contain many such
relationships as first-class language constructs. Unfortunately, few substantial re-
sults are available for either the management of graphical scenarios like UCMs,
or their integration to general requirements, with the noticeable exception of the
work of Alexander [1] and a recent DOORS add-on called Analyst [22], which
will both be discussed in section 6.

This paper introduces a scenario-oriented requirements engineering frame-
work and focuses on three complementary contributions. First, sections 2 and 3
illustrate several steps used in the construction of a UCM model from informal
requirements. The case study selected here is the Autonomous Shuttle Trans-
port System (ASTS), presented as a requirements oracle at the Scenarios: Mod-
els, Algorithms and Tools Dagstuhl seminar [7]. ASTS is a rail-based transport
system under development intended to enable individual traffic of people and
goods, which today is mainly conducted by cars and trucks, by autonomously
acting shuttles on rail [20]. The second contribution is a novel approach to the
integration of UCM scenarios in a RMS. Section 4 presents how UCMs can be
imported into DOORS, how they can be connected to external requirements, and
how these links can be exploited for evolving scenarios, requirements, and de-
signs. We demonstrate the feasibility of such an approach with a new UCMNav
export filter, which generates documents that can be imported into a commer-
cial requirements management system. A particular attention was paid to the
unavoidable evolution of scenario models and other requirements. The third con-
tribution (section 5) builds on previous work to show that simple analysis and
evaluation of performance models generated from UCMs can influence several re-
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quirements and architectural decisions early in the development process. Finally,
our conclusions are discussed in section 6.

2 Requirements Capture Using UCM

2.1 Basics of Use Case Maps

The Use Case Map notation was developed to capture scenario descriptions
as causal flows of responsibilities for object-oriented design of real-time sys-
tems [9, 12]. In a requirements engineering context, UCMs also proved to have
several benefits over many other scenario notations: they abstract from message
exchanges, they support scenario integration and interaction detection, and they
visually connect behaviour and architecture in a map view [3].

As shown in Fig. 1, the UCM notation uses filled circles for start points
(triggering events and preconditions), bars for end points (resulting event and
postconditions), crosses for responsibilities (abstract actions and activities), and
rectangles for components (e.g., software module, hardware, actors). Components
can contain responsibilities and sub-components. With paths, responsibilities can
be causally linked in sequence, as alternatives, or in parallel. Maps can also be
decomposed hierarchically with stubs (shown as diamonds on a path, see Fig. 2)
and plug-ins (sub-maps bound to stubs). UCMs are currently being standardized

Fig. 1. Initial ASTS Use Case Map (version 1)

 

RailSystem

Shuttle

init

ready

GetTopo

GiveTopo

SaveTopo

ready
done

newOrder

rcvOffers

calculateO&P offerTimer

failOrder

assignOrder

calcOffers

[offer_timed_out]

move

reqMove

checkMove

End 
point 

Start 
point 

Component 

Loop 

AND-join AND-fork Timeout Path 

Timer 

OR-fork OR-join Responsibility Triggering path 



Traceability and Evaluation in Scenario Analysis by UCM 137

Fig. 2. ASTS UCM with move stubs (version 3)

by the International Telecommunications Union as part of the User Requirements
Notation (URN) [2, 11].

The UCM Navigator (UCMNav) is a multi-platform tool that supports the
editing and analysis of UCM models [24], which can also be exported to various
formats such as EPS (used for the figures in this paper), MIF, CGM, and SVG.

UCMs have been used as a basis for various kinds of model transformations.
UCMNav can extract individual scenarios from complex UCM models and ex-
port them as XML files, which can further be transformed and refined (e.g., with
the UCMExporter companion tool [4]) into Message Sequence Charts (MSC),
UML 1.4 sequence diagrams, and TTCN-3 test case skeletons. We will take ad-
vantage of such transformations in section 4.3. UCM models have also proved to
be a good basis for describing and synthesizing system component behaviour in
LOTOS [5], SDL [10], and communicating state machines [6].

UCMs can be annotated with performance-oriented information, which en-
able UCMNav to export performance models in the form of Layered Queueing
Networks (LQN) [18]. Enabling scenario-based performance analysis early in the
design process and as close to the requirements specification phase as possible
may influence several major decisions regarding the system architecture. This
topic will be explored further in section 5, again using ASTS as an example.

2.2 Capturing ASTS Scenarios Using UCM

The requirements for the ASTS were given to the workshop participants as
handouts along with instructions to focus on the shuttle control [20]. One of
the handouts provided a high-level overview of the system and described the
railway network, the way in which customers place orders, the rail shuttles, and

RailSystem

Shuttle

init

ready

GetTopo

GiveTopo

SaveTopo

ready

done

newOrder

rcvOffers

calculateO&P offerTimer

failOrder

assignOrder

calcOffers

[offer_timed_out]

IN1 loadOUT1 IN1
unload

OUT1

reqPay

processPay

successOrder

move move



138 D.B. Petriu et al.

the way in which shuttle income and expenses are assessed. Another handout
provided a more detailed description of the simulation environment in which the
shuttle control software is evaluated as well as descriptions of typical Use Cases
involving the shuttles.

UCMs capture the emerging behaviour of a system. This is done by tracing
the behaviour and overlaying it on the system structure. The behaviour traces
are called paths and the system structure is represented with components. Along
the paths, responsibilities are identified and allocated to suitable components.

In this case, the first step towards creating a UCM for the ASTS involved
identifying the system components. Initially the only components identified were
the RailSystem and multiple Shuttles, as shown by the rectangles in the UCM in
Fig. 1.

The second step was to identify the two main Use Cases from a shuttle’s
viewpoint which are initialization and serving customer orders. The initializa-
tion Use Case deals with the Shuttle acquiring the rail network topology from
the RailSystem upon activation. The serving customer orders Use Case has the
Shuttle waiting for a new order to arrive from the RailSystem and calculating and
submitting an offer. If the offer is accepted, then the Shuttle proceeds to move
and serve the customer.

The initialization Use Case is shown in Fig. 1 as the UCM path that begins
at the init start point inside the Shuttle component. The path is based on the
Receiving Topology sequence diagram from [20], which simply describes a request
from the Shuttle and the answer provided by the RailSystem (referred to as
Kernel in the original document). The Shuttle requests the network topology
by executing the GetTopo responsibility. The RailSystem records the topology
as represented by the GiveTopo responsibility. Finally the Shuttle receives the
topology and saves it as part of the SaveTopo responsibility. The Shuttle is now
ready to serve customers.

The serving customers Use Case is synthesized from various sequence dia-
grams from the initial requirements [20]. The path begins with the Shuttle being
ready and awaiting the arrival of a newOrder from the RailSystem. The RailSys-
tem sets a timer for waiting on offers from different Shuttles, shown in Fig. 1 as
the rcvOffers timer. In the UCM notation, timers are shown with a clock symbol
and they are set when reached on a path. When the connected end point from
a different scenario path (i.e., the triggering path) is reached in time, the timer
is reset and the scenario can progress on the original path, otherwise the time-
out path (shown with a zigzag symbol) is taken. When a new order arrives, the
Shuttle calculates an offer and a path through the rail network (the calculateO&P
responsibility) and sends it to the RailSystem while also setting an offerTimer to
wait for a notification that it has been awarded the order. The RailSystem eval-
uates all the offers and chooses the best one (the calcOffers responsibility). It
then notifies the winning Shuttle (the assignOrder responsibility).

The successful Shuttle receives the order assignment and proceeds to serve
it. The move loop shows how the Shuttle traverses a track segment by first
requesting permission to move onto a new segment (reqMove). The RailSystem
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checks whether the Shuttle can move safely to the new segment and then notifies
it. Any Shuttle that does not get the order times out on the offerTimer timer and
resumes waiting for another newOrder.

If the RailSystem does not receive any offers for a given order during the bid-
ding period (rcvOffers times out) or none of the offers are acceptable (calcOffers
does not have a winning bid) then it aborts the processing of that order. An
order failure handling mechanism was not specified in the ASTS handouts, but
such a mechanism can be added later.

This first UCM model shown in Fig. 1 was created in a little over an hour
by a single person interpreting the ASTS documents and entering the UCM in
the UCMNav tool. The advantage of UCMNav is that it provides a platform
for quick editing of UCMs with facilities for exporting and importing models.

3 Scenario Evolution Using UCM

The ASTS scenario was rapidly created and improved during the Dagstuhl sem-
inar, which illustrates one of the strengths of the approach. During a group dis-
cussion of about an hour, the initial UCM shown in Fig. 1 was evolved through
six steps. After specific feedback following a presentation to the other partici-
pants, version 7 (shown in Fig. 4) was created.

Scenarios evolve by the addition of functionality, steps to correct the logic
of the path, encapsulation of detail, and restructuring of a set of scenarios (as
described in [8]). For example, the first change was by addition, to extend the
successful order completion path to incorporate payment to shuttles and to name
the successOrder and failOrder end points in the RailSystem. The second change
added a second optional shuttle movement in the scenario to get the shuttle to the
pickup station. To simplify the map, it also encapsulated the shuttle movement
behaviour into a plug-in map within the stub move. This gave version 3 as shown
in Fig. 2 and 3. The move stub is used twice (shown as the diamond shapes
labelled move), and in both cases, the plug-in map is bound to the stub according
to this relationship: {<IN1 → leave>, <arrive → OUT1>}, which ensures the
continuation of the path accross connected maps.

The next steps are not shown by diagrams, but version 4 introduced an ad-
ditional optional move of a shuttle for repositioning (as part of a global strategy
to provide shuttles in all regions of the system), before a new order is received.
Version 5 moved two responsibilities into two new components, a TopoAgent to
create and maintain the system view of network topology, and a BankAgent to
process payments. Initially these components were nested inside the RailSystem
component, where the responsibilities were initially defined, but in version 6 they
were made separate (as indicated in Fig. 4). Version 6 also introduced a Com-
municationEnv component containing all the other components and representing
the simulation communication environment. This was done in order to align the
UCM with the deployment diagram provided in the informal requirements [20].
Version 6 was presented to the other participants in the requirements oracle
session.
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Fig. 3. Plug-in for the move stub in the ASTS UCM (versions 3 to 7)

Fig. 4. ASTS UCM with additional move stub and three new components (version 7)

Fig. 4 shows the final version (version 7) created in response to feedback
received from other participants after the presentation. The only major change
was made to the move plug-in where we added approved and denied alternatives to
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the RailSystem response when a Shuttle requests to move to a new track segment,
as well as an addMCost responsibility to account for each track segment that a
Shuttle travels on. These were not in the original loop of Fig. 1, nor in the original
plug-in map.

4 Managing UCM Evolution in DOORS

The creation and evolution of scenarios and other requirements can be inter-
twined in many ways. Typically, scenarios will be used to discover requirements
or to provide an operational view of existing requirements for understanding
and validation. In turn, requirements can also trigger the discovery or evolution
of scenarios. Such iterative process can be supported by requirements manage-
ment systems (RMS), for example Telelogic DOORS [21]. Most RMS focus on
structured textual requirements, with support for traceability, access control,
and version control. Adding scenarios brings in a complementary view that can
be beneficial to many stakeholders.

Fig. 5. Original ASTS description imported into DOORS, with links to/from UCMs

Many RMS can import requirements from various sources, including word
processors. For instance, we can import the original ASTS informal requirements
into DOORS, leading to an initial database of requirements objects, as shown by
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the document in Fig. 5. The nature of these requirements objects can vary from
operational requirements to non-functional requirements and quality attributes.
They can also be more or less structured, depending on the quality of the source
document.

4.1 Combining UCMs with External Requirements

To combine scenario descriptions with other requirements, they should be linked
using the facilities of the RMS. Links of this kind between scenarios and informal
requirements were discussed also by Leite et al. [16], using an experimental RMS.

To use an RMS, the scenario elements must be imported into its data space.
When this is done, the intrinsic links within the scenario can also be created
as RMS links. These include predecessor/successor sequence links, linking re-
sponsibilities to the entity for the scenario, and linking components to scenarios
and responsibilities. We have implemented this importation in DOORS using
scripts native to the tool, and including facilities for incremental update from a
modified scenario.

The process begins by representing the external requirements in the RMS.
Fig. 5 shows the textual ASTS requirements in the DOORS tool. Then the
scenario is imported, and its elements are linked to other requirements. For
example, a timing requirement for the scenario as a whole can be linked to the
scenario entity, or a deployment requirement can be linked to the components
it references. Fig. 5 shows an indication of a link from an ASTS requirements
object to a UCM.

4.2 Exploiting Traceability Links: UCM Elements and Other
Requirements

The links are used in reasoning about requirements and about changes to require-
ments. Objects have categories and links are typed. Links are also directional
(“A depends on B”), and may be navigated in either direction (that is from a
requirement object to those that depend on it, or to those it depends on). Fig. 6
shows a DOORS display of ASTS UCM components and a link from Shuttle
to its responsibilities (above) and a display of UCM responsibilities linked with
their components (below). Link direction is indicated by an arrowhead.

A “big picture” of relationships through links can help to identify clusters
of dependencies, and missing information. Fig. 7 shows a traceability matrix
indicating links between entities in the text document (represented by the bars
at the top) and the UCM components (indicated by the bars below). The black
spots in the matrix indicate the existence of links. If a UCM requirement object
is not directly or indirectly linked to external requirements, then this might
indicate that a link is missing or that this UCM element is not required. If
a requirements change is resolved by a scenario change, the scenario can be
updated in the UCM end and re-imported. As mentioned above, links to entities
which have not changed are maintained when the map is re-imported.
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Fig. 6. UCM components and responsibilities in DOORS, with attributes and links

Fig. 7. Traceability matrix between UCM components and external requirements
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4.3 Exploiting Traceability Links: UCM Scenarios and Other
Requirements

A UCM scenario specification may imply many different paths, depending on
the conditions that govern choices made during the execution. These choices can
be specified as path preconditions, which are Boolean variables defining guard-
ing conditions on OR-fork branches, timers, and dynamic stubs. The resulting
scenario definition implies a corresponding sequential path or partial order. A
UCM traversal mechanism [12], implemented in UCMNav, is used to extract the
specific scenario (partial order) corresponding to a given definition, and stores
the result in a XML file. Our DOORS import capability includes these specific
scenario definitions. The XML file can also be converted to various forms [4],
such as a Message Sequence Chart (MSC) or a UML sequence diagram.

The ASTS UCM in Fig. 4 was supplemented with such variables and con-
ditions. One scenario was defined to describe what happens when a new order
fails because the shuttle’s offer is not acceptable. UCMNav can highlight the
UCM paths traversed by this specific scenario. The resulting scenario was also
converted to an MSC by UCMExporter, hence enabling a better visualiza-
tion of the complete, end-to-end scenario (Fig. 8). Note that the move loop
was not traversed in this scenario in order to keep the trace short. In general,

Fig. 8. Result of the FailedOrder scenario definition, converted to an MSC
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Fig. 9. FailedOrder scenario imported into DOORS & linked to other requirements

UCM start/end points are converted to MSC messages and responsibilities to
actions. MSCs were preferred to UML 1.x sequence diagrams here because they
support explicit parallel inline statements as well as timers (as in UML 2.0).
Additional messages are synthesized during the transformation to insure that
inter-component causality is preserved. These synthetic messages have been re-
named with more meaningful names here (e.g., orderAvailable and makeOrder).

The same FailedOrder scenario was imported into DOORS, as shown in Fig. 9.
This scenario view provides the means to connect UCM elements and external
requirements in a way that would be difficult otherwise. Instead of manually
linking each pair of relevant external requirements directly (there would be too
many pairs, and many might be missed by requirements engineers), the traceabil-
ity can be done more efficiently via UCM scenarios. For instance, the informal
descriptions of shuttle and agents (respectively section 2 paragraph 1 and section
2.1.0 paragraph 4 of the informal document), discussed in the previous examples,
can be linked in the following way:

– UCM element Shuttle to section 2 paragraph 1 (manual, but obvious)
– UCM element BankAgent to section 2.1.0 paragraph 4 (manual, but obvious)
– UCM scenario SuccessfulOrder (not shown here) to UCM element Shuttle

and to UCM element BankAgent (not obvious, but automatic with scenario
import)
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Such links created automatically provide very helpful support when perform-
ing traceability and impact analysis on requirements. A RMS tool could hence
answer questions such as “What is connected to this requirement, directly or
indirectly?” or “What scenarios and external requirements would be directly or
indirectly affected if we removed this responsibility or this component?”. Addi-
tionally, this automated process would prevent missing non-obvious links, would
be easier to use in a scenario/requirement evolution context, and would lead to
clearer explanations to questions such as the ones above because of the avail-
ability of link types (providing rationales).

5 Performance Evaluation of UCM Scenario Models

Performance requirements represent an interesting application area for the types
of links discussed in this paper. UCM scenarios can easily capture functional and
operational requirements, but they can also be supplemented with annotations
to describe various aspects of performance requirements. This combined view is
sufficient to enable the generation of performance models [18]. Analysis of such
models can be used to detect hot spots and trace them back to the scenarios and,
indirectly, to the components requirements and environment requirements to
which these scenarios are linked. This can help prioritize important issues which
may lead to the evaluation of alternative requirements for (COTS) components,
execution environments, and performance requirements altogether. A strategy
where requirements are linked to scenarios analysed outside the RMS is likely
to be more profitable and agile than a total integration strategy (scenario tool
within the RMS) because the analysis complexity remains outside of the RMS
environment. We are currently exploring this strategy.

UCMNav incorporates a built-in export filter that generates Layered Queue-
ing Network (LQN) performance models [15]. The path traversal and transfor-
mation algorithm for the generation of LQNs is explained in detail in [19]. Several
path detail changes were made to version 7 of the ASTS UCM (Fig. 4) in order
to comply with the usage rules for creating UCMs that are well-formed for the
purpose of performance model generation, as described in [18].

Fig. 10 shows the LQN model generated from the ASTS UCM. The trapezoids
in the diagram represent tasks and the arrows represent calling relationships be-
tween them – full arrow heads denote synchronous calls while half arrow heads
denote asynchronous calls. LQN tasks are subdivided into entries which repre-
sent services that the task provides, as well as optional activities that represent
the detailed breakdown of the workload for a given entry. For visual clarity, entry
and activity details for the ASTS are left out of the LQN figures presented here.
Instead, dashed lines are used to provide a graphical shorthand for the entry
and activity sequencing inside tasks.

The documents provided at the requirements oracle session did not provide
the workload parameters required to do a complete performance analysis of the
ASTS. The LQN model was therefore generated with default parameter values
as explained in [19]. Even with the use of these default parameters, running



Traceability and Evaluation in Scenario Analysis by UCM 147

Fig. 10. ASTS LQN showing the calling relationships between tasks

the ASTS LQN model through the LQNS analytical solver does provide some
interesting non-quantitative insights into the system architecture.

The LQNS solver tool can be configured to automatically detect call cycles in
a model [15]. In the case of the ASTS LQN, it detected a cyclical calling pattern
between the Shuttle and RailSystem tasks. These cycles can be seen in Fig. 10 and
are representative of a breakdown in the layering of a system. Further inspection
of the LQN reveals that these cycles are due to the bundling of the track segment
management and the order management functions in the RailSystem task. This
bundling is due to a lack of detail in the ASTS requirements. Since the documents
were focused on explaining the shuttle behaviour requirements, there was no
detailed description of the RailSystem itself. Thus the two functions are not
actually required to be bundled together and can be separated.

Fig. 11 shows a repartitioned LQN for the ASTS. The RailSystem has been
divided into an OrderMgr task to handle new orders and assign them to shut-
tles, and a TrackMgr task to deal with permissions for shuttles to use individual
track segments. This repartitioning gives the system a well-layered architecture.
In addition it also separates two functions that may have different performance
requirements. The track permission functionality is safety-critical and should
definitely have hard real-time constraints in term of response times and dead-
lines. The order management functionality is related to the overall usability of
the system and only needs to perform within soft real-time constraints.

This evaluation could hence lead to modifications to the ASTS UCM (not
shown here), such as the definition of two sub-components for RailSystem, with
partitioning of the paths and responsibilities. This new version of the UCM,
together with new versions of the resulting scenario files, could then be imported
again into DOORS, where the requirements objects and links would be updated.
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Fig. 11. Repartitioned ASTS LQN without cyclical calls

Specific and appropriate performance requirements could then be created for the
new sub-components.

6 Conclusions

This paper has presented a framework for rapidly creating UCM scenario mod-
els from requirements documents, for rapidly refining those UCMs using the
UCMNav editor while maintaining traceability links between versions and to
the original requirements through the use of a requirements management system,
and for analysing the software architecture of the system based on an evaluation
of the LQN performance model generated from the UCMs. The framework was
illustrated using the ASTS as an example. Section 2 explained how the require-
ments documents were interpreted in order to create the initial ASTS UCM.
Section 3 described the steps used in rapidly prototyping the resulting UCM so
as to capture as much of the system behaviour as possible (at a high level of
abstraction) and to incorporate additional details and thinking about the system
resulting from discussions among requirements oracle participants.

Section 4 introduced a new, tool-supported iterative process for combining
UCM scenarios with other types of requirements in the DOORS RMS. The UCM
notation provides an appropriate means of capturing the important scenarios for

 

CommE nv 

OrderM gr 

(RailSystem) 

Shuttle BankAgent

TopoA gent

ShuttleMoveLoop 

Init Move NewOrder 

TrackMgr (RailSystem) 

CommE nv 



Traceability and Evaluation in Scenario Analysis by UCM 149

a given system, of integrating them in a single model, and of linking them to
external requirements and documentation. Such traceability to a scenario view
can help assess the validity and the completeness of requirements. Since both
scenarios and external requirements evolve over time, our tool also maintains
the existing links whenever this is possible.

The novelty of the approach is also partly due to the open and flexible import
interface with the RMS. Others have shown similar interests in combining graph-
ical scenario models with an RMS. With ScenarioPlus, Alexander has extended
DOORS to support various notations including UML 1.x Use Case diagrams
and class diagrams [1]. However, the diagrams must be drawn directly within
the RMS, causing substantial usability and performance problems. Earlier this
year, a DOORS plug-in called Analyst became available [22], which supports
most UML 2.0 diagrams. Analyst also uses a separate model editor and then
synchronizes the updated models with the DOORS database, where links to
other requirements objects are created. The number of supported modelling lan-
guages and the integration with the RMS are impressive, but this tool uses a
rigid synchronization model and proprietary interfaces. The approach presented
here is more open in the sense that one can freely adapt the RMS library or the
UCMNav export mechanism to import exactly the information that is needed.
However, we see a lot of potential in combining our tools with the Analyst as
this would provide a way to connect requirements and UCM scenarios with more
detailed design aspects, in UML 2.0.

Finally, Section 5 builds on previous work to show that simple analysis and
evaluation of performance models generated from UCMs can influence several
requirements and architectural decisions early in the development process. The
detection of cyclical calling dependencies between ASTS tasks and the resulting
repartitioning of the system in order to remove those cycles illustrates the value
of early performance analysis even on incomplete models, as well as the value of
being able to automatically generate the performance models from tools such as
UCMNav.

This work has demonstrated the feasibility of the approach and has led to
several additions to existing tools, especially to handle interoperability. Future
work will involve the strengthening of the current prototypes in terms of coverage
of UCMs, robustness, usability, and interoperability with performance tools and
with UML 2.0 tools. We also plan further validation of the approach through
industrial case studies.
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(NOTERE’04), Säıdia, Morocco, June 2004.
http://ucmexporter.sourceforge.net

5. Amyot, D. and Logrippo, L.: Use Case Maps and LOTOS for the Prototyping and
Validation of a Mobile Group Call System. Computer Communication, 23(12),
1135–1157, 2001.

6. Bordeleau, F. and Buhr, R.J.A.: UCM-ROOM Modeling: From Use Case Maps to
Communicating State Machines. Proc. of IEEE Engineering of Computer-Based
Systems (ECBS’97), 169–179, Monterey, California, March 1997.
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Abstract. In this paper a general framework is presented for testing time-
critical systems and software. The main focus is to derive a state-oriented statis-
tical usage model from a set of usage scenarios in order to automatically gener-
ate test cases. We describe a methodology that was developed within the Euro-
pean IST project MaTeLo to ease testing by combining the advantages of 
formal description techniques, namely MSC, UML and TTCN-3. In the first 
step of our approach, a MCUM (Markov Chain Usage Model) is constructed. 
This model represents the formal basis for deriving TTCN-3 test case descrip-
tions to perform executable specification-based tests for the system under test 
(SUT). In order to be independent of the chosen specification technique, i.e. 
MSC or UML sequence diagrams, we have defined an XML-based 
representation format for the MCUM, called MCML (Markov Chain Markup 
Language). This format represents a common interface between various tools of 
the MaTeLo approach. All steps in our methodology do also support the testing 
of QoS (Quality of Service) requirements that are annoted in a UML profile 
standard notation. 

Keywords: Software Testing, Automatic Test Generation, Markov Chain Us-
age Model, UML Sequence Diagram, MSC, TTCN-3, QoS. 

1 Introduction 

Model-based software development techniques are getting more and more attractive 
in order to master the inherent complexity of real-world applications. Different mod-
els are used for all kind of purposes during the software development cycle and han-
dle static and dynamic aspects of the software system. 

Specific functional and non-functional requirements can be verified and validated 
by models, which focus on semantic properties that are described in a formal notation. 
Examples are the assurance of deadlock freeness or to guarantee the correct time be-
havior for real-time software. 

Nevertheless, in practice it is impossible to develop error-free software due to the 
system’s complexity and testing is necessary to 
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• detect programming faults, 
• evaluate the code reliability or its performance and 
• ensure that a critical function of a system meets given requirements. 

Testing techniques can be classified and compared with respect to several criteria, 
e.g. the adequacy of the chosen set of test cases because exhaustive testing is not pos-
sible even for a small SUT. It is also possible to ask, whether the SUT is executed or 
not and if dynamic, respectively static tests have to be designed and to be developed. 
If implementation details and the internal structure of the SUT are of interest struc-
tural or white-box testing approaches are adequate, otherwise specification-based or 
black-box test techniques could be used. 

Instead of focusing only on functional system properties, non-functional require-
ments are becoming more and more important [12]. The reason for this is that in 
many application domains, such as mobile communications, avionic or automotive 
QoS-oriented quantities like real-time behavior, performance and reliability issues 
represent essential non-functional requirements of the SUT. 

The European IST project MaTeLo (Markov Test Logic)1 started from recent re-
search results in the field of statistical usage testing ([1,3,4,5]) and developed a dynamic 
specification-based testing technique. The main goal was to automate the test suite gen-
eration from use case scenarios, having “statistical usage testing” as its main test objec-
tive. This means to assure the software reliability from the user's point of view and to 
guarantee that this result will correspond to a statistical confidence interval. 

At the start of the software development cycle, a formal description of the expected 
usage of the system has to be specified using either the UML 1.3 Sequence Diagram 
[17] or MSC-96 (Message Sequence Chart) [19] notation. From that specification a 
MCUM is generated automatically, which is the base for the automatic generating of 
TTCN-3 (Testing and Test Control Notation version 3) [18] test case descriptions. 

In the next section we will first discuss testing techniques in more detail that have 
influenced our method, i.e. black-box testing with TTCN-3 and the statistical usage 
testing approach. In section 3 the QED framework (QoS Enhanced Development) for 
automated test generation, reflecting non-functional QoS requirements is described in 
more detail. Section 4 explains how to derive test cases step by step using the Ma-
TeLo tool chain. Finally, we discuss specific implementation aspects and will close 
with summary and final remarks. 

2   Testing Concepts and Techniques 

2.1   Black-Box Testing with TTCN-3 

TTCN-3 is the newest version of the well established test notation language TTCN, 
standardized by the ETSI [18]. It is a universal language for test specification, valid 
for any application domain e.g. protocol, service or module testing and suitable for 
different kinds of testing approaches, e.g. conformance, robustness, interoperability, 
regression, system or integration tests. 
                                                           
1  IST-2001-32402, http://www.alitec.net/matelo/ 
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The complete TTCN-3 test suite is written in an abstract way. The main building 
blocks are modules, consisting of a definitions part and an optional control part. In-
side the definitions part, the test architecture, test behavior, test data and the data 
types have to be specified. The control part contains a description of the sequential 
execution of the test cases with subsequent test verdicts and corresponds to the 
“main”-method of programming languages. The executable or interpretable test suite 
is the TE (TTCN-3 Executable), which is shown in Fig. 1. 

 

Fig. 1. General Structure of a TTCN-3 test system 

In addition, other entities that are necessary to make the abstract concepts concrete 
are depicted. Via the TTCN-3 Control Interface (TCI) the test execution can be influ-
enced with respect to test management and test logging (TM), test component han-
dling for distributed testing (CH) and encoder/decoder functions for different repre-
sentations of TTCN-3 data types (CD). 

The TTCN-3 Runtime Interface (TRI) was defined to enable the interactions be-
tween the SUT and the test system by means of a standardized interface. Fig. 1 shows 
two parts of the TRI. The description of the communication system is specified in the 
SUT Adapter (SA). The Platform Adapter (PA) implements timers and external func-
tions based on the underlying operating system. 

Because the testing of non-functional requirements was not a primary issue for the 
TTCN-3 standardization group several extension proposals were made, e.g. 
PerfTTCN [9] and TimedTTCN-3 [10]. While PerfTTCN is designed for TTCN-2, 
the predecessor of TTCN-3, TimedTTCN-3 is lacking of describing traffic models, 
which are necessary to test the SUT for specific workload situations. We therefore 
decided to use our own QTTCN3 (QoS-TTCN-3) notation that is part of the QED 
framework. 
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A small TTCN-3 example is given below that corresponds to the UML sequence 
diagram in Fig. 6. It shows a simple test case for a mobile phone setup procedure. 

testcase tc_init_MS() runs on MyTestComponent 

system MyTestSystemType 

{ 

  map(self:Port1, system:COM2); 

  label Init; 

  Port1.send("ATZ"); 

  alt{ 

  [] Port1.receive("OK") { 

         setverdict(pass);} 

  [] Port1.receive { 

         setverdict(fail);} 

  } 

  Port1.send("ATE0"); 

  alt{ 

  [] Port1.receive("OK") { 

         setverdict(pass);} 

  [] Port1.receive { 

         setverdict(fail);} 

  } 

  label Idle; 

  unmap(self:Port1, system:COM2); 

} 

Fig. 2. TTCN-3 code example 

2.2 Statistical Usage Testing 

In statistical testing of software, testing is treated as an engineering problem that has 
to be solved by statistical methods. Because exhaustive testing is impossible for most 
real-world software systems, only a representative test sample can be chosen to repre-
sent the most probable usage behavior of the software. 

A usage model as shown in Fig. 3 is a characterization of all possible scenarios of 
the software use at a given level of abstraction. Usage models can be constructed be-
fore code is written and are finite representations of infinite usage scenarios of a given 
system. A test case is any traversal of the usage model. A random test case is any tra-
versal of the usage model based on state transitions that are randomly selected from a 
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usage probability distribution. Certification of the software means attaining reliability 
and confidence goals for an environment of use and to define stopping criteria. 

The basic principle behind statistical usage testing is that the tests are based on the 
anticipated operational usage of the system and test cases are generated from the 
user’s external point of view. The general approach consists of a number of consecu-
tive steps [1]: 

 

Fig. 3. Example for a Markov Chain Usage Model 

1. Get a system specification of the SUT in any formal or informal description 
technique. 

2. Derive the structure of a MCUM of the SUT, i.e. a graph consisting of state 
nodes and arcs between states (see section 3.3 for more details)Assign transition 
probabilities to the MCUM by using requirement definitions, simulation or moni-
tored field data of a running similar / predecessor system, or simply by transfer-
ring annotated probabilities from the system specification. Because the system 
could work within different environments several sets of probabilities for a single 
MCUM structure are allowed. 



 Scenario-Based Statistical Testing of Quality of Service Requirements 157 

 

3. Analyze and verify the MCUM by means of standard Markov techniques, such as 
the long-run occupancy, occurrence probability, occurrence frequency or first oc-
currence of certain states and the expected sequence length of a random run of 
the system. The outcome of the analysis may also lead to restructuring the 
MCUM or to reassign another set of transition probabilities to the arcs. In any 
case, steps 2 to 4 have to be repeated until the MCUM is stable and will represent 
the SUT in its typical behavior. 

4. Create non-random test cases, possible types are e.g. model coverage tests, re-
gression tests or importance tests  

5. Planning of performing statistical tests means 
i. Estimation and generation of the number of random test cases that have to be 

run by using the expected test case length derived during model analysis. Each 
test case is a random walk through the MCUM, from its invocation state up to 
the termination state. 

ii. Definition of the best-case scenario, i.e. under the assumption that no failures 
will occur in random testing determine the values of product quality and proc-
ess sufficiency that can be achieved by running the number of test cases gen-
erated in Step i. 

iii. Definition of the worst-case scenario, i.e. assume some profile of failures and 
construct a failure log based on the profile. 

iv. Analysis of the coverage of all model states, arcs, and paths that will occur 
during the test. 

v. Analysis might show that testing as planned cannot fulfill the assumptions for 
model coverage or the required reliability. In this case one has either to revise 
the goals or the test plans. 

6. Perform the randomly generated test cases of the former step. As they were gen-
erated with respect to probabilities representing a usage profile, the test result al-
low the estimation of reliability. 

7. Perform the test certification process, which calculates the merits of additional 
ongoing testing. The decision to stop testing can be derived from 

• the confidence in a reliability estimate 
• the degree to which testing experience has converged to the expected usage 

of the system 
• model coverage criteria based on a degree of state, arc, or path coverage dur-

ing random testing. 

Very often, only subjective criteria are used to decide to stop test campaigns. Using 
a statistical approach allows however to assess software’s reliability and to define 
stopping criteria that rely on a mathematical approach. This is the main advantage of 
statistical usage testing. 

2.3   UML SPT-Profile 

To enable testing of non-functional QoS requirements one has to include QoS decla-
rations into the specification of the SUT. This issue is addressed in the UML SPT 
Profile (Profile for Schedulability, Performance and Time Specification, [15]) that 
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was standardized by the OMG in order to annotate QoS requirements within a given 
UML model. 

Essentially, there exist three basic concepts in the SPT Profile related to time. Tim-
ing mechanisms, i.e. clocks or timer, offer time services with various characteristics 
like drift, resolution, offset etc. Timed Actions are used to model actions that need 
some time (also delays) and Timed Stimuli represent any stimuli, i.e. a communication 
instance between a sender and receiver, with associated timestamps. 

The performance aspects in the SPT Profile deal with characterizing the workload 
and the resources used while executing the modeled scenarios. All kind of attributes 
can be specified, e.g. the population or occurrence patterns of the workload, the exe-
cution time of a single step or the throughput of available resources. 

The SPT Profile also contains concurrency related concepts: 1) new stereotypes 
and tagged values to specify how resource services are performed, 2) stimuli to gen-
erate actions that are called message actions and 3) concurrent units representing 
concurrently executed active units. 

Last but not least three primary types of entities are needed to support schedulability 
modeling that is 1) scheduling job, i.e. the system workload, 2) shareable resource,, 
which is used by the scheduling jobs during execution and 3) execution engine that 
represents the computing power. Since a schedulability model is normally not in the 
focus to be tested for a given SUT, it is not relevant for our further discussions. 

3   Specification-Driven Testing 

3.1   Quality of Service Enhanced Development (QED – Framework) 

In general, the QED framework describes how a UML specified object-system is 
tested with a black box approach that is also reflecting non-functional QoS require-
ments of the SUT. In case of any functional or non-functional failure, a monitoring 
process can be attached as a second step (see Fig. 4). 

The system specification containing functional and non-functional requirements as 
well is the base for deriving the test specification (Fig. 4a) that consists of the test ar-
chitecture, test behavior, test data and data types. To support this specific application 
area the expressiveness of the UML is extended by the UML Testing Profile [14]. By 
adopting the QoS annotations from the system specification a QoS test can be de-
scribed. Because this Profile was developed in order to operate with existing methods 
for black box testing, for a working test execution environment the mapping to a 
TTCN-3 test suite is straight forward (Fig. 4b). 

SPT Profile compatible QoS requirements specifications in the UML model give ad-
ditional information for testing. Properties of given timing mechanism specify require-
ments for the concrete time measurement device that is used to assure different time re-
quirements during test execution. The basic behavior of the built-in TTCN-3 timer is 
represented by a “snapshot semantic” that fails especially in a distributed testing envi-
ronment because of its restricted scope unit of a test component and the test control part. 
Here, a clock device for getting the absolute time is needed, one possible syntax and 
semantic is described within the ITU standardization proposal document [13]. 
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Fig. 4. QED framework for testing systems that contain QoS requirements 

In order to test the system’s performance, the specified workload has to be gener-
ated. During the test execution a time-stamped event trace is created that contains all 
monitored events for evaluating the performance requirements of the input demands. 
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This so-called foreground workload can be either generated by a hard-
ware/software workload generator called by external functions, or by a dedicated 
TTCN-3 test component, respectively. In addition the tester needs information about 
the background workload of the SUT. Besides active triggering the system with artifi-
cially generated input stimuli, passive monitoring of the real data flow can be done. 
The first approach enables exact knowledge and control of the background load, the 
second one is closer related to the reality but (normally) lacks of extreme situations. 
To summarize, it is necessary to describe traffic models inside the TTCN-3 and to 
provide performance evaluation functions. 

It is worth to note that concurrent stereotyped objects have separate threads of con-
trol. This means that their behavior is distributed over different test components, 
which are running concurrently within a TTCN-3 test suite. 

Statistical usage testing, as described in section 2.2, for automatically deriving test 
cases is integrated in the framework (Fig. 4c). Based on the sequence diagrams of the 
system specification an MCUM is built and used to generate TTCN-3 test cases. 
These steps are described in more detail in the following sections. 

The SUT and the ETS (Executable Test Suite) are compiled in step d of Fig. 4, 
which creates run able objects for testing, including different non-functional require-
ments (Fig. 4e). 

Test verdicts are either used to enhance the system specification or to extend the 
tester specification, e.g. higher granularity, more test cases, and so on. If a FAILED 
verdict occurs with respect to a non-functional requirement, the black box test can be 
extended by attaching QoS monitoring, which is a specific white box test to discover 
the problematic code fragments.  

To facilitate QoS monitoring, the system specification has to be instrumented, i.e. 
additional functionality to produce trace information is inserted into the SUT to out-
put specific QoS information for a given PoI (Point of Interest) [2]. This can also be 
done automatically by using QoS annotated sequence diagrams of the system specifi-
cation produced at the beginning of the QED development process. The result will be 
an instrumented system specification, as shown in Fig. 4f. 

After compilation, the following execution-run can be monitored to derive a time 
stamped event trace (Fig. 4g) together with additional QoS data of the selected PoIs. 
After analyzing the SUT trace, supplementary information concerning QoS violations 
will be available. Depending on these analysis results proper changes to the system or 
the tester specification can be made, resulting in a new cycle within the QED approach. 

3.2   Scenario-Based and Specification-Driven Test Case Generation 

The MaTeLo tool-chain for specification-driven test case generation is shown in Fig. 
5, realizing the upper part of QED i.e. steps ‘a’ to ‘e’ in Fig. 4. Rectangles in the dia-
gram represent input and output data of the MaTeLo tools that are interconnected. 
Starting with sequence diagrams describing usage scenarios, there were different tools 
implemented for converting them to a MCUM, for editing and analyzing the model in 
a graphical environment, and for test case generation and execution. 
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Fig. 5. Tool-Chain for Specification-driven test case generation 

Core of the chain is the generation of a MCUM as a dedicated test model (ex-
plained in section 3.3). There exist several possibilities to derive the MCUM transi-
tion probabilities. The first one is the direct inclusion from probabilities that are given 
in annotated sequence diagrams. A second approach will calculate the transition prob-
abilities from weighted sums to reach a successor state from its predecessor within the 
MCUM. If no further a-priori information is given all weights are equal and the tran-
sition probabilities in all successor states are the same, i.e. 1 divided by the number of 
successor states. A test-constraints based method is described in [21]. Another choice 
is to add probabilities manually within the graphical Markov chain editor of the Ma-
TeLo tool chain. The internal MCUM representation for the editor is a particular 
XML-based description called MCML (Markov Chain Markup Language). 

In the second step, QoS requirements can be added, by using a subset of the UML 
SPT Profile [15] with minor modifications. Only time and performance aspects were 
considered at the moment. Other aspects, such as internal concurrency are not testable 
by pure black-box techniques like TTCN-3 and will not be observable outside the 
SUT. 

3.3   Generating the Structure of the Markov Chain Usage Model 

Fig. 6 is an example sequence diagram from a usage specification, which contains all 
important scenarios of the future software usage given at a definite level of abstraction. 

An algorithm is required to convert this set of UML sequence diagrams, respec-
tively MSC specifications into a valid MCUM representation. During the conversion 
process, the following tasks will be executed: 
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Fig. 6. UML-SD with user-defined state information for a mobile phone 

• User-defined state information (UdI), attached to messages as comments, will 
be mapped to MCUM states (Initiation and Idle in Fig. 6 / Fig. 8), 

• Identification of necessary intermediate states, i.e. automatically constructed 
states for the MCUM that occur as a result of message transmissions without 
given UdI annotations. 

The algorithm for transforming scenarios into a MCUM representation consists of 
five consecutive steps: 

1. Specification of the usage model via sequence diagrams, which also contain UdI 
annotations attached to messages. The meaning is as follows: a UdI attached to 
an input message is interpreted as the actual state before receiving that message, 
a UdI attached to an output message is the successor state after sending this mes-
sage. 

2. Selection of the granularity for the MCUM, i.e. what level of the system should 
be tested 

• complete system behavior, i.e. all objects within the usage scenarios 
• partial system behavior of a set of objects within the usage scenarios 
• individual behavior of exactly one object within the usage scenarios 

3. Construction of the MCUM from the scenario descriptions. 
   The main mapping algorithm is as follows: Let S and T be the set of states, 

respectively transitions in the final MCUM. A transition t∈T is a 4-tupel (s1, i, o, 
s2), where s1, s2∈S and i and o are input, respectively output messages to and 
from the SUT. The interpretation of t is like this: if the MCUM is in state s1 and 
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a (possibly empty) input message i (the so-called stimulus) is send to the SUT, 
the SUT has to send the (possibly empty) output message o (the so-called ex-
pected result) and the MCUM is going into state s2. We forbid the case, where i 
and o are both empty within the same transition. 

Fig. 7 shows the details of the MCUM construction algorithm as pseudo code: 

i. lines 2-3: some initialization work (e.g. set of states S and transitions T) 
ii. lines 4-28: loop for all available sequence diagrams 

iii. lines 5-11: get the first message and check, if it’s an input message; if 
that is true, add the attached state information or - if missing - the new 
created artificial intermediate state to S 

iv. lines 12-27: loop for all following messages 
v. lines 15-18: get the user-defined/intermediate state information of the 

input message and check, if the predecessor was also an input message; 
if that is true, create a new transition t 

vi. lines 19-23: get the state information of the output message and check if 
the predecessor was an input message; create a new transition t accord-
ing to its answer 

vii. lines 24-26: add the new state and transition to their set 

01 MCUM_generation() { 
02 S, T = {};   // set of states and transitions 
03 int i, k = 1;   // indices 
04 while(PENDING_SDs) { 
05  m[i] = get_next_message(); 
06  if(m[i] != input) exit("not allowed, must be input"); 
07  else { 
08   if((s[k] = m[i].get_attached_state) == empty) s[k] = create_interstate(); 
09   S = S ∪ s[k]; 
10   k++; 
11  } 
12  while(PENDING_MESSAGES) { 
13   i++; 
14   m[i] = get_next_message(); 
15   if(m[i] == input) {                  // if input message 
16    if((s[k] = m[i].get_attached_state) == empty) s[k] = create_interstate(); 
17    if(m[i-1] == input) t = create_transition(s[k-1], m[i-1],, s[k]); 
18   } 
19   else {   // if output message 
20    if((s[k] = m[i].get_attached_state) == empty) s[k] = create_interstate(); 
21    if(m[i-1] == input) t = create_transition(s[k-1], m[i-1], m[i], s[k]); 
22    else t = create_transition(s[k-1],, m[i], s[k]); 
23   } 
24   S = S ∪ s[k]; 
25   T = T ∪ t; 
26   k++; 
27  } 
28 } 
29 } 

Fig. 7. MCUM construction algorithm 
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4. Minimization of the MCUM by merging superfluous states and removing redun-
dant transitions. This action is done in parallel to step 3 above. A superfluous IS 
(intermediate state) occurs if outputs without UdI are directly followed by an in-
put with UdI or an input without UdI directly follows an output with UdI. In 
these situations the IS is merged into the UdS (user-defined state derived from a 
corresponding UdI). Since one or more sequence diagrams may contain the same 
UdI, duplicate UdS are merged at the end to derive a MCUM that contains only 
unique state names. Two IS in a sequence are mapped to the first IS.  

5. The final structure of the MCUM for testing a mobile phone is shown in Fig. 8, 
which was created from a set of five sequence diagrams. Because in more than 
one of the sequence diagrams the same UdI is used, i.e. Idle and Connected, the 
structure of the MCUM is not a linear chain but contains cycles between different 
states or loops into the same state. 

6. Representation of the MCUM by means of an XML-based MCML (Markov 
Chain Markup Language) description. This allows transferring the MCUM con-
veniently between different parts of the MaTeLo tool set, i.e. MCML converter, 
graphical MCML editor and TTCN-3 test case generator. On the other hand it is 
wise to use existing XML tools as shown in the next section in order to reduce 
the costs for implementing the converter tool. 

The MCML schema for constructing an MCUM model also contains definitions to 
apply the SPT Profile syntax for specifying non-functional QoS properties. Fig. 9 
represents an excerpt of the MCML-file derived from Fig. 8 for testing the Phone ob-
ject including the (highlighted) time attributes. 

 

Fig. 8. MCUM for testing the behavior of a mobile phone 
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<?xml version="1.0" encoding="UTF-8"?> 
<UML:MCMLS xmlns:UML="href://org.omg/UML/1.3" ID="0"> 
 <MCProp name="Phone" syntax="1.0" label="default"/>
  
 […] 
 
<dynamique> 
 <invoke id="S9998" name="Invoke" x="" y=""> 
  <!-- The start point of the markov chain. --> 
 </invoke> 
 <terminate id="S9999" name="Terminate" x="" y=""> 
  <!-- The end point of the markov chain. --> 
 </terminate> 
 <states> 
  <state name="Initiation" x="" y="" id="S10"/> 
  <state name="Inter_State" x="" y="" id="S11"/> 
  <state name="Idle" x="" y="" id="S12"/> 
  […] 
 </states> 
 
  […] 
 
  <event name="ATZ_String" id="T2" from="S10" to="S11"> 
   <proba profile="Profile1" value=""/> 
   <proba profile="Profile2" value=""/> 
   <input name="ATZ_String"> 
   <timing type="RTstimulus" RTstart="(0,'ms')" 
RTend="(1.5,'ms')" 
      RTduration=""/> 
    <dvalue/> 
   </input> 
   <expresultauto name="OK"> 
    <dvalue/> 
   </expresultauto> 
  </event> 
  <event name="ATE0_String" id="T3" from="S11" to="S12"> 
   <proba profile="Profile1" value=""/> 
   <proba profile="Profile2" value=""/> 
   <input name="ATE0_String"> 
    <dvalue/> 
   </input> 
   <expresultauto name="OK"> 
   <timing type="RTstimulus" RTstart="(3,'ms')" 
RTend="(5,'ms')" 
      RTduration=""/> 
    <dvalue/> 
   </expresultauto> 
  </event> 
 
  […] 
 
 </eve[…]nts> 
</dynamique> 
</UML:MCMLS> 

Fig. 9. MCML code example 



166 M. Beyer and W. Dulz 

 

As mentioned before, we adopted the syntax and semantic as described within the 
UML SPT Profile [15] to handle stereotypes regarding time and performance aspects. 

All real-time related stereotypes start with the prefix RT, performance stereotypes 
use the prefix PA. Stereotype <<RTaction>> specifies time aspects that are related to 
a message, the attributes describe start and end, respectively duration of the message. 
<<RTstimulus>> is used to express time requirements for which the user cannot spec-
ify the duration. <<RTdelay>> specifies the time duration that may happen before the 
occurrence of a given message. Stereotype <<PAperformance>> is used to specify 
required (PAdemand) and observed (PArespTime) time requirements of a given de-
mand, utilization (PAutilization) and throughput (PAthroughput) specify performance 
properties of a resource within a given time duration. 

Time related Stereotypes 

Stereotype Attribute 
RTstart 
RTend RTaction 

RTduration 
RTstart 

RTstimulus 
RTend 

RTdelay RTduration  

 

Performance related Stereotypes 

Stereotype Attribute 
PAdemand 

PArespTime 
PAutilization 

PAperformance 

PAthroughput 

4   Case Study: The Paderborn Shuttle System 

At the University of Paderborn a new rail-based transport system is being developed 
[22]. This project was chosen as a case study for the Dagstuhl seminar on which the 
MaTeLo tool set was successfully applied. Fig. 10 shows the MSC for a correct deliv-
ery scenario of a single shuttle order. 

Because the original document [22] only contains UML sequence diagrams with 
textual annotations to specify a looping behavior we first had to produce MSC dia-
grams. In the MSC standard additional inline expressions are standardized to handle 
alternatives, options, exceptions, loops or parallel behavior. For example, in Fig. 10 
loops are used to express the movement of a shuttle from any point to the source and 
from source to destination after loading the shuttle. By the way, UML 2.0 interaction 
diagrams will also provide these features in the future.  

In the previous algorithm for deriving the structure of the MCUM only linear be-
havior was reflected. Because inline expression structure the sequence of messages in 
a certain way - depending on the chosen construct - it is necessary to define the trans-
formation into a MCUM for each of the inline expressions. 

In Fig. 11 the loop inline expression and its corresponding MCUM structure is ex-
plained. In the MSC on the left side hexagons are used to represent conditions, which 
are very similar to the UdI state annotations we have introduced in our UML  
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sequence diagrams. Thus, a loop construct is included between the user given condi-
tions “initiation” and “idle”. The meaning is that every state between “inline 
loop_begin” and “inline loop_end” is visited for each loop cycle. The “Loopback” 
transition in the MCUM has to assure that the number of cycles is within the allowed 
interval between 1 and 5 as defined in the MSC loop expression “loop <1,5>”. This is 
done by a non-visible loop counter inside the transition 

Fig. 12 shows a screenshot of the MaTeLo Markov chain Editor that contains the 
complete MCUM for the shuttle case study. Here, also a possible non-successful 
shuttle delivery and the resulting penalty are reflected. In the open Properties-
Window of the selected transition several attributes, i.e. transition probabilities for 
two possible probability profiles, input message and expected result can be seen and 
edited. 

 

Fig. 10. MSC for a successful delivery 

It is worth to mention that in our approach different probability sets, so-called pro-
files, can be handled. The reason is that under normal conditions the transition prob-
abilities may be too small for reaching a certain set of states in the MCUM while  
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executing the test cases. For example, exception handling to handle correct error re-
covery will normally occur very seldom during normal operating phases of an SUT. 
In order  to cover this behavior during the test a different probability set can be 
specified in a specific “exception profile”. Important but little used transitions will 
get a higher probability and are more thoroughly tested i.e. these transitions are 
executed more often by random test cases. The resulting reliability calculation will 
still reflect an unbiased value through application of the theory of importance sam-
pling [23]. 

The diagram in Fig. 13 shows the Generation report window of the Markov chain 
Tester. In the example a sample of 100 test cases was generated randomly using the 
probabilities defined for Profile1. For each individual test case the length of the path 
between the start and end state is reported. In the Mean TC length canvas the mean 
length of the total set of 100 test cases based on the probabilities of Profile 1 is re-
ported with 28.36. The coverage of states, transitions (events) and specific items from 
an item list is also reported. Pressing the TTCN-3 button at the bottom generates sev-
eral TTCN-3 files including all necessary test information like test behavior, test 
components and templates for the test data. 

After test execution the MaTeLo Report (Fig. 14) reveals all kinds of test results. 
Failure rate (expected number of error states in a chain traversal), MTTF (expected 
number of states to the first occurrence of an error state), reliability numbers based 
on the different probability profiles and different calculation methods ([1,4]), lo-
calization of errors, uncovered elements and other supplementary information are 
contained in the Report Generation window. Most parts are presented in a graph or 
tabular oriented notation and thus represent in total a human friendly user inter-
face. 

 

Fig. 11. MSC loop inline expression and corresponding MCUM 
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Fig. 12. Screenshot of the MaTeLo Markov chain Editor 

 

Fig. 13. Screenshot of the MaTeLo Tester 
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Fig. 14. Screenshot of the MaTeLo Report Generation 

5   Implementation of the MCML Converter 

For easily deriving the MCUM from the UML-specified system, we developed an 
UML sequence diagram converter tool called uml2mcml (UML to MCML converter), 
that implements the algorithm described in section 3.3. 

We decided to use standard, public-domain compiler development tools based on 
Java and XML. Fig. 15 gives an overview of the main parts inside of the MCML con-
verter. In the front-end of the converter, any tool can be used that is able to produce 
XMI descriptions for UML sequence diagrams. In the MaTeLo project the Unisys 
XMI generator was chosen that is embedded in the Rational Rose tool suite. In the 
back-end a Java tool is used to analyze and manipulate the intermediate XML files. 
The implemented java classes rely on the JDOM API2 and a SAX XML-parser3 to 
read the XML descriptions. Via the MCML DTD (Document Type Definition), the 
final MCML format for the MCUM is generated. 

The advantage of this dual-stage converting technique is the flexibility with respect 
to changing input/output requirements, like in our case reading different input 

                                                           
2  JDOM API Javadoc, http://www.jdom.org/docs/apidocs/  
3  SAX API Javadoc, http://www.saxproject.org/apidoc/ 
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Fig. 15. Main components of the MCML converter 

languages. To support a subset of the MSC-96 ITU standard [19], we used JavaCC4 
and JJTree5 in order to implement the tool msc2mcml (MSC to MCML converter) 
[20]. In the back-end of this dual-stage converting process, we can easily derive dif-
ferent versions of the MCML, which contain for example different QoS annotations 
depending on the given MCML DTD. 

6   Summary 

To err is human". This statement remains correct even for better development proc-
esses and better specification, implementation or testing languages. From this point of 
view to let the test case selection, generation and execution further be a manual task 
without automatisms seems to be an anachronism. Therefore, an automated test case 
generation approach based on the TTCN-3 standard is a desired step towards a better 
quality assurance practice for real-time systems and software. 

This paper presented the QED framework for testing UML specified systems, in-
cluding QoS requirements specifications that are gaining more and more importance. 
In particular, we discussed the MaTeLo approach for automatic test case generation. 
Here, scenario-based statistical usage testing based on a MCUM is applied, which is 
not a common practice in the industrial world, because the lack of specific tools. 

The key idea is to start from scenario specifications, i.e. UML sequence diagrams 
or MSCs in order to define a formal usage model. Next a MCUM is automatically 
built representing the test model enabling the validation of the SUT at a wanted level 
of confidence and reliability. In addition, Markov modeling techniques allow the ap-
plication of innovative QoS analysis methods. Examples are the calculation of 
WCET (worst case execution time) when time constraints are given or performance 
evaluation of the SUT by using a rich theory that has been established in recent 
years. 

                                                           
4  http://www.experimentalstuff.com/Technologies/JavaCC/ 
5  Apache Software Foundation, http://ant.apache.org/manual/OptionalTasks/jjtree.html 
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Test case generation in the new TTCN-3 notation makes the test execution phase 
more efficient. Because TTCN-3 is no longer fixed to the conformance test of com-
munication systems but offers modern component-oriented inter-communication fa-
cilities, it can be applied to the description and generation of executable test cases for 
many application domains. 

There is a real need for metrics related to software and system reliability, perform-
ance or more general QoS characteristics. Important impacts on the development 
processes can therefore be expected: accurate predictions of software release time, 
better control of schedule and cost, increased quality, consumer satisfaction and last 
but not least safety within the resulting software products. 
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Abstract. Two fundamental problems related to Scenario-based Soft-
ware Engineering (SBSE) are presented: model checking and synthesis.
The former is to verify that a design model is consistent with a scenario-
based specification. The latter is to build a design model implement-
ing correctly a specification. Model checking is computationally expen-
sive and synthesis of distributed system is undecidable. Two lightweight
techniques are thus presented that alleviate this intractability. These ap-
proaches sacrifice completeness for efficiency, but keep soundness.

1 Introduction

The difficulty to produce quality software requirements has long been iden-
tified [Jac92]. They all too often turn out to be unsuitable, incomplete, am-
biguous, contradictory, redundant, continually changing, and so on. Researchers
and practitioners have devoted much efforts trying to find solutions to cap-
ture better requirements. Scenario-oriented solutions are among the most suc-
cessful attempts. They became increasingly popular over the past ten years,
through the widespread adoption of UML [OMG03] and Use Cases [Jac92].
Remark that, although Scenario-Based Software Engineering (SBSE) actually
covers a wider family of techniques expanding over elicitation, specification, ver-
ification, validation, inspection, prototyping, animation, negotiation,. . . [RG00,
CM02, WPJH98], we are mostly interested in scenario-based specifications, their
verification and their use for code generation.

Specification techniques range from the most informal ones to those having
a precise, mathematically defined semantics. Our focus is on the latter, which
are a necessary prerequisite to unambiguous specification and efficient automa-
tion. However, these problems are intractable. In this paper, we will present
“lightweight” versions of algorithms solving these problems. We will sacrifice
completeness but keep soundness of these algorithms.

Our contributions concern Live Sequence Charts (LSCs) [DH01], a notation
introduced by David Harel and Werner Damm in order to overcome some limita-
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Fig. 1. Critical resource requirement specified with MSC

tions of Message Sequence Charts (MSCs) [ITU00], namely, the lack of message
abstraction and the inability to specify the modality of a scenario. As an exam-
ple, consider the following standard distributed system requirement: “Whenever
a process enters the critical section, it eventually exits it”. Fig. 1 represents the
corresponding MSC.

If this scenario is to be interpreted as recommended by the ITU standard,
it means that Start using is followed by Stop using, without any other message
being exchanged in the interval. This entails that the process may not send any
requests to the critical resource when using it! Of course, the intended meaning
of this scenario is different: the process starts using the critical section and
after some time, during which no message relevant to this requirement is sent, it
releases its lock on the critical resource.

The status or modality of the behaviour described by the MSC is also unclear:
is it a simple example only used for illustrative purposes or is it a universal rule
(“In given circumstances, the system shall always behave as specified”)? Thus
LSCs abstract away irrelevant messages and attach a modality to each scenario:
universal, example (existential) or even counter-example (anti-scenario), as we
will see in Section 3.2.

A typical SBSE process (see Fig. 2) is usually based on use cases. In such
a process, one progressively moves from concrete, partial examples (or counter-
examples) of behaviour to more general requirements statements. This way of
doing fosters communication between software engineers and the other stake-
holders [WPJH98]. Additionally, it facilitates the identification of test cases and
the production of user-documentation. As this human-intensive bottom-up elici-
tation task progresses, the precision of the corresponding documentation should
also evolve from informal, error-prone representations to more formal models.
Hence, LSCs with their multiple modalities, intuitive MSC-like syntax and their
formal semantics, seem worth considering to support the task.

But this is only the start of the process. What we devote our interest to in
this paper are the subsequent steps. In his vision paper [Har01], David Harel
essentially sees it as building a system model (made of two interrelated models,
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Fig. 2. Scenario-based Software Engineering (adapted from [Har01])

a structural model and a state-based behavioural model) and then producing
code from it. He foresees a bright future in which the synthesis and verification
will be formal and largely automated (see Fig. 2). The present paper is a first
step in this direction.

A challenge that we face at this point is to transforming scenarios into a
system model (and subsequently into code). This is a major paradigm shift.
We start with a scenario-based inter-component perspective (scenarios typically
describe component interactions vs internal actions) and we end with a state-
based intra-component perspective. General techniques are thus computationally
extremely expensive. We show here how to make them better. In counterpart,
we have to abandon the idea to provide exhaustive algorithms, and just keep
soundness. Still, we are convinced that our algorithms are effective in detecting
specification problems and generating implementations.

2 Running Example

To illustrate our approach, we will use excerpts from a variation of the Center
TRACON System (CTAS Case Study) from NASA [BHK03, WS02]. This system
coordinates various air traffic related clients, in order to ensure that they all use
the same weather information. We will focus on the part of the system in charge
of updating the weather reports used by clients. The system is made of the
following components:

Weather Control Panel (WCP): the User Interface through which operators
manually trigger updates;
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Communication Manager (CM): the central part of the system, in charge
of synchronizing the various clients;

Client: distributed on the various sites, where accurate weather data is needed.
We will assume that there are only two clients and that they are already con-
nected to the system. In the original system, there is a part of the system in
charge of connecting, disconnecting and initializing clients;

Database: from which the clients retrieve weather reports. We assume that
there is only one database to which all clients direct their queries;

Terminal: computers on the distributed sites that make use of the weather
reports downloaded by clients.

3 Models and Relationships

3.1 Structure

Fig. 3 gives the structural view of our example through a variant of object
diagrams. Boxes represent agents. Associations (arrows) between agents are di-
rected, denoting one-way communication channels. They are typed by the names
of the messages/events they carry.

3.2 Inter-agent Specifications

Inter-agent specifications are partial “one story for all agents” [Har01]1 scenario-
based descriptions constraining the overall system behaviour.

WeatherCP :: f2 CommMgr :: cm

User::user
Client:: c[1]

Client:: c[2]

Terminal:: term[1]

Terminal:: term[2]

Database:: db

disable,

enable

update

click

yes, no

yes, no

yes, no

get_new, use_new,

get_old, use_old

get_new, use_new,

get_old, use_old

use_new, use_old

use_new, use_old

get_new, get_old

Fig. 3. Structure model

1 [Har01] speaks in terms of objects rather than agents.
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User:: user WeatherCP :: f2 CommMgr :: cm

click

update

disable

status_up

CommMgr :: cm

get_new

status_up

Client :: c[1]Database :: db

get_new

yes

yes

,no

no

ALT

(a) (b)

Fig. 4. Universal Live Sequence Charts (uLSCs)

An LSC resembles a Sequence Diagram [OMG03] or a bMSC [ITU00]. Fig. 4
presents two universal LSCs. An event (arrow) is instantaneous and can only
appear between agent instances (vertical lifelines) which classes were declared
to control or receive it, respectively, in the structure diagram. The points of
a lifeline where events occur (i.e. the sources and targets of arrows) are called
locations. On a given lifeline, locations are ordered chronologically from top to
bottom. Events being instantaneous, senders and receivers synchronize on them.

Universal scenarios (uLSCs) embed a general trigger-response pattern as well
as a frame axiom restricting which events can, must or cannot happen during
the execution of a scenario. uLSCs consist of two concatenated basic charts: the
prechart (i.e. the trigger) and the main chart (i.e. the response). The former is
surrounded by a dashed hexagon. The latter comes below the prechart within a
solid rectangle (see fig.4). The scenario in fig.4(a) asserts that, whenever the user
clicks on the weather control panel f2 and f2 sends an update order to cm,
cm must disable f2 and set its own status to “updating” through status up.
Because all events appearing in the scenario are restricted, this scenario forbids
the occurrence of click or update between disable and status up.

The uLSC in fig 4(b) contains an ALT-box: only one of the two subboxes is
chosen. ALT-boxes are treated in [Bon03], where all results are carried over.

Abstract Syntax In compliance with the semantics of MSCs [ITU00, CEMR98],
a basic chart defines a labeled partial order on events [BS03]. First, the set of
all events (arrow labels) is denoted by Σ. We assume that events contain infor-
mation about their sender and receiver. Let Σs

a (resp. Σr
a) be the set of events

sent (resp. received), by agent a. Locations are sources and targets of arrows.
Two locations l and l′ are directly ordered if they belong to the same lifeline
and l is drawn higher up than l′. Since communication is instantaneous, the
two locations of a same arrow shall be reached simultaneously; hence, they are
order-equivalent. The transitive closure of this direct ordering defines a preorder.
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All locations of an equivalence class must be labeled by the same event. This
ensures that the quotient of the preorder defines a labeled partial order.

Definition 1 (Labeled partial order (LPO)). A Σ-labeled partial order
(LPO) is a tuple 〈L,≤, λ〉, where

– L is a set of locations. If L is finite, the LPO is called finite.
– ≤⊆ L×L is a partial order on L (a transitive, anti-symmetric and reflexive

relation).
– λ : L→ Σ is a labeling function associating events to locations.

The LPO is deterministic if furthermore ∀l, l′ ∈ L : λ(l) = λ(l′) =⇒ l ≤
l′ ∨ l′ ≤ l. A linearization of a finite LPO is a word of w1 . . . wn ∈ Σ∗ such that
the LPO 〈[n],≤, {(i, wi)|i ∈ [n]}〉, where [n] is a shortcut for the set {1, . . . , n},
is isomorphic to some linear (total) order 〈L,≤′, λ〉 with ≤⊆≤′. An ideal (or
cut) in an LPO is a set c ⊆ L such that ∀l ∈ c : ∀l′ ∈ L : l′ ≤ l =⇒ l′ ∈ c.
By abuse of language, we call “ideal” the LPO resulting in the projection of an
LPO on a given ideal.

Using ideals, one can define a transition system.

Definition 2 (Ideals Transition System, c
e−→ c′). The states of ideals tran-

sition system are ideals in the considered LPO (see def. 1). Given two ideals c

and c′, there is a transition labeled by some event e (written c
e−→ c′) iff there

is an e-labeled location l which has all its predecessors in c, but is not in c and
c′ = c ∪ {l}.
This transition system has the property that ∅ w−→∗

c if, and only if, c is linearized
by w.

Definition 3 (Universal LSC or uLSC).
A uLSC is a tuple 〈L,≤, λ,ΣR, P 〉 such that

1. 〈L,≤, λ〉 is a deterministic ΣR-LPO. ΣR contains the restricted events2 of
the uLSC;

2. P ⊆ L is the prechart. Every prechart location should occur before a main
chart location: P × (L \ P ) ⊆≤.

Semantics The semantics of a uLSC is, like linear temporal logics (LTL), given
in terms of a model relation: for every possible infinite sequence of events γ ∈ Σω,
we say that γ is a model of a uLSC S = 〈L,≤, λ,ΣR, P 〉 (written γ |= S) iff, for
every decomposition uvγ′ of γ (u, v ∈ Σ∗ and γ′ ∈ Σω), if v|ΣR

linearizes P ,
then

∃w ∈ Σ∗ : γ′ = wγ′′ ∧ w|ΣR
linearizes M.

2 That is, roughly, those events that must take place at the moments determined by the
uLSC but cannot happen elsewhere while the scenario’s main chart is “executing”.
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The language of a uLSC is its set of models. An LSC specification (say S) is
a set of uLSCs and its language (L(S)) is the intersection of the languages of its
component uLSCs.

We decompose the constraint expressed by a uLSC per event. Each partici-
pating agent will be responsible for the constraints linked to the events he sends.
Consider a finite run w ∈ Σ∗ and an uLSC S = 〈L,≤, λ,ΣR, P 〉. We say that
this run activates a location l in S if there is some suffix v of w such that we
can find an ideal c in S

1. in which l is maximal (l ∈ c and ∀l′ > l : l′ /∈ c),
2. which contains the prechart (c ⊇ P ),
3. which does not contain all the locations (c ⊂ L),
4. which has v|ΣR

among its linearizations.

Definition 4 (required event, forbidden event). If w activates some l such
that e ∈ ΣR labels one of the direct successors of l, then we say that w requires
e. Conversely, if w activates some l such that e ∈ ΣR does not label any of the
direct successors of l, e is said to be forbidden by w.

Definition 5 (e-safety, e-liveness). A run γ ∈ Σω is e-safe (resp. e-live) iff
for every finite prefix w ∈ Σ∗ of γ, if w forbids (resp. requires) e, then w · e is
not a prefix of γ (resp. ∃v : w · v · e is a prefix of γ).

The following theorem asserts that, by checking that forbidden events do not
occur and required events eventually occur, we are sure that an LSC will be
satisfied.

Theorem 1 (uLSC = Σ-liveness ∩ Σ-safety [BS03]). For every γ ∈ Σω,
γ |= S iff γ is e-safe and e-live, for every e ∈ ΣR.

Our ultimate goal is to build an open reactive system. The structure diagram
shows all the agents interacting in the application domain. Some of them are
system agents, i.e. components of the system that we are in charge of building,
while other are environment agents, whose behaviour is beyond our control.

Let Sys ⊂ Ag be the set of “system” agents. Their controlled events are
ΣSys =

⋃
a∈Sys Σs

a. We define similarly ΣEnv =
⋃

a∈Env Σs
a, the set of events

controlled by the environment, as Env = Ag \ Sys).
As we already highlighted, a uLSC constrains how the various agents interact,

by forcing them to behave as prescribed in the main chart, when they have
been interacting as in the prechart. This constrains the system as well as its
environment. Hence, when designing the system, we may safely assume that
the environment will fulfill its safety and liveness obligations. This leads to the
natural notion of “implementation correctness”.

Definition 6 (Correct implementation). Let Σ be partitioned into ΣSys,
the set of system-controlled events, and ΣEnv, the set of environment-controlled
events. A set of words W ⊆ Σω is a correct implementation of a uLSC iff

∀γ ∈W.

{
γ is ΣEnv-safe =⇒ γ is ΣSys-safe
γ is ΣEnv-live =⇒ γ is ΣSys-live.
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So, we end up with a system that will guarantee the satisfaction of its speci-
fication, provided its environment behaves as assumed.

3.3 Intra-agent Specifications

We use a variant of the formalism of finite Input/Output Automata for specifying
the behaviour of each agent separately. This formalism has been introduced in
[LT89], originally without the restriction of being finite state. It is a conceptually
simple model, which allows us to focus on proofs, abstracting from syntactic and
semantic complexities. By its very nature, this formalism is adapted for describ-
ing distributed systems, when the focus is on interaction and synchronization.
Indeed, the components specified are robust to scheduling; they may not make
any assumptions on the relative speed of their environment. Furthermore, since
we are interested in open systems, this formalism acknowledges the fact that
no component can constrain its environment’s behavior; this is guaranteed by
the syntactic condition called “input-enabledness”. Finally, to effectively sup-
port component-based software engineering, our model must make it possible to
hierarchically build components from subcomponents, which shall themselves be
open systems, while keeping refinement in mind [Bro03]. The framework of I/O
automata has composition as a first-class citizen, which guarantees refinement.

Abstract Syntax

Definition 7 (I/O Automaton). An input-output automaton is a tuple

〈Σi, Σo, Q, q0,Δ,P〉,
– Σi ⊆ Σ is a set of input events;
– Σo ⊆ Σ is a set of output events. Input and output events are disjoint;
– Q is a finite set of states;
– q0 is an initial state;
– Δ ⊆ Q × (Σi ∪ Σo) × Q is a transition relation. An I/O Automaton must

be input-enabled: for every state q and input event e ∈ Σi, there must be a
state q′ such that Δ(q, e, q′);

– P ⊆ 2Σo is a fairness partition. It is a set of equivalence classes between
output events that must be treated fairly (see def. below).

Semantics A run of an I/O automaton is an alternating sequence of states and
events, r = s0e0s1e1 . . ., starting at q0 and following the transition relation: for
every i > 0, Δ(si−1, ei−1, si). The trace of r is the sequence of events observed
on r (e0e1 . . .). An event e is said to be enabled at state q if there is a transition
Δ(q, e, q′). For a fairness class E ∈ P, r is E-fair if, for every event e ∈ E,

1. there are infinitely many states si such that e is not enabled at si; or,
2. e occurs infinitely often in r.

A run is fair if it is E-fair, for every E in P. The language of an I/O Automaton
A, denoted by L(A), is the set of words {γ ∈ Σω|A has a fair run on γ}.

Two I/O Automata can be composed, using a variation of the usual syn-
chronous product of automata.
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Definition 8 (Composition of I/O automata). The composition of two au-
tomata A1 and A2, with Aj = 〈Qj , qj

0,Δ
j , Σj

i , Σj
o〉, for j = 1, 2, is defined if

their output events are distinct (Σ1
o ∩Σ2

o = ∅). In that case, A = A1 ×A2 is

1. Q = Q1 ×Q2;
2. q0 = (q1

0 , q2
0);

3. Σi = (Σ1
i \Σ2

o)∪(Σ2
i \Σ1

o) i.e. only input events controlled by neither agents
are input events of the composition;

4. Σo = Σ1
o∪Σ2

o : we do not hide “local events”, in order to ensure associativity;
5. Δ((q1, q2), e, (s1, s2)) iff

– e ∈ Σ1 ∩Σ2 and Δi(qi, e, si), for i = 1, 2;
– or, e ∈ Σ1 \Σ2, q2 = s2 and Δ1(q1, e, s1) or vice-versa.

6. P = P1 ∪ P2, i.e. we keep the original fairness conditions.

The composition operation enjoys the following properties:

Lemma 1. For every I/O Automata A1,A2,A3, provided composition is de-
fined, we have

Associativity: A1 × (A2 ×A3) = (A1 ×A2)×A3.
Commutativity: A1 ×A2 = A2 ×A1.
Refinement (Trace inclusion): L(A1 ×A2) ⊆ L(A1)

Proof. Associativity and commutativity are shown in [LT89]. The former relies
on the fact that A1 output events caught by A2 are not hidden. Trace inclusion
comes from the fact that A2 cannot block an A1 transition in the composition,
by input-enabledness (see def.7) . Therefore, fairness is preserved.

3.4 Relationships Between Models

Usually, the meanings of inter- and intra-agent models overlap. Along the lines
of [Har01], we take advantage of this redundancy by relating models in two ways:

Model checking: given a uLSC model S and a state-based model associating an
I/O automaton to every system agent (A1, . . . ,An), we check that the composed
system fulfills S: L (

∏n
i=1Ai) ⊆ L (S)

Synthesis: given a uLSC model S, we verify that it is possible to find one
automaton per system agent such that their composition is a correct implemen-
tation of S.

4 Previous Answers

There has already been much research for solving the two issues presented in
section 3.4. However, the proposed solutions suffer performance problems.
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4.1 Model Checking

LSCs can be translated to temporal logics [KHP+01, Bon01] and fed into a model
checker. LSCs can be translated to LTL, or CTL, or even ACTL [Eme90], or
Büchi automata [KW01].

The formula obtained from a uLSC is

�
∧

w∈ lin(P )

(
φw =⇒

∨
v∈ lin(P )·lin(M)

φv

)
,

where φε = #, φa·u = (a ∧ ©(N Uφu)), and N = ¬e1 ∧ . . . ∧ ¬en, where
ΣR = {e1, . . . , en}.

However, these approaches face two obstacles:

1. The formula presented above is exponential in the size of the specification.
2. Computing the product of the numerous I/O Automata composing the sys-

tem can lead to the state explosion problem.

4.2 Synthesis (Aka Realizability Checking)

We have implemented the exponential time algorithm presented in [BS03]. This
program, called a Realizability Checker [Ros92], builds a correct implementa-
tion. This state machine is often exponential in size, and hardly readable by
users.

We use the explanation power of animation [Hey01] to illustrate the flaws
found by the realizability checker. If the specification is realizable, an implemen-
tation is built. Then, the analyst plays the role of the user, i.e. triggers environ-
ment events. The animator simulates the reaction of the system, according to
the synthesized strategy. If the implementation is not behaving as expected, the
model can be adjusted and synthesized again.

If the specification is not realizable, the algorithm builds a sabotage plan
for the environment. Controlling environment events, it will lead every system
implementation to failure. The roles are thus reversed during animation: the
analyst plays the role of the future system whereas the animator plays an evil
environment, following the sabotage plan. The analyst will always be driven to
a state where he will have to violate some constraint. The animator announces
conflicting constraints, such as “scenario X requires event e but this event is
forbidden by scenario Y”. The analyst can backtrack in the execution and try
alternatives. Fig. 4.2 presents a screenshot of (part of) the animator.

The synthesis algorithm described above depends crucially on the perfect in-
formation hypothesis: every agent can sense every event. This ignores the inter-
face description from the structural model, which explicitly defines which events
are visible to each agent. It is more interesting to synthesize a distributed system
in which every agent only listens to events specified in its interface. However,
telling whether such an implementation exists is undecidable [Ros92].
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Fig. 5. Realizability checker/Animator screenshot

5 A Lightweight Approach

Since the problem is undecidable, we propose lose completeness but keep sound-
ness: Every implementation produced is correct, but our algorithm may fail to
find some implementations.

5.1 Model Checking

First, we suggest to use the techniques for minimizing the size of the formulae
generated from uLSCs devised in [Bon01, KHP+01]. Typically, a uLSC can be
split into several small formulae, in which we only need to check the proper
ordering of pairs of events, and not all linearizations (as in sec. 4.1).

In order to address the state explosion problem, we suggest to ignore all
components that do not participate in the verified uLSC. Suppose that only
agents i through k participate in S. Hence, it is sufficient to check that the
uLSC is correct, with respect to the subsystem composed of agents i through
k only. Since we demonstrated that I/O automata composition is a refinement,
proving that the uLSC is satisfied by this reduced system is enough to show that
the global system is correct, too:

L
⎛
⎝ n∏

j=1

Aj

⎞
⎠ ⊆ L

⎛
⎝ k∏

j=i

Aj

⎞
⎠ ⊆ L(S).

Furthermore, when the subsystem can satisfy the LSC on its own, it indicates
that the design achieves low coupling: the fulfillment of the property does not
depend on components which are not directly involved in it.



Lightweight Formal Methods for Scenario-Based Software Engineering 185

However, if model checking fails, it might be a false negative: the counter-
example could have been avoided, had we included more agents in the system,
which one can try.

5.2 Synthesis

Our lightweight algorithm is illustrated in fig. 6. Its steps are detailed in the rest
of this section.

(1) Agent Selection As opposed to the previous algorithm, the lightweight al-
gorithm focuses on a single agent at a time. It does not try to find a strategy for
all participants in one run. For the rest of this section, let a be the selected agent.

(2) Sanity Check All scenarios in which a participates actively are checked
to ensure that their causal order matches their visual order. Two locations are
causally related if they are sending locations on the same lifeline or if they are the
sending and receiving locations of the same event. This is done in polynomial
time [AHP96]. Fig. 7 gives an example of a uLSC which does not fulfill this
condition. Clearly, it is not simply distributable for agent obj3, because d may
only be sent after c has occurred, which obj3 cannot see.

If this sanity check fails, the algorithm stops and explains why specification
is not distributable.

(3) Scenario Projection All scenarios are projected onto the lifeline of agent
a (e.g., the upper part of fig.6 illustrates an attempt to synthesize an imple-
mentation for c[1]). All uLSCs in which a is not required to perform any event
are discarded. For instance, the scenario of fig 4(a) would be discarded because
c[1] does not take part in it. In summary, Step 3 produces a set of non-empty
uLSCs, reduced to the lifeline of a, one for each uLSC in which at least one event
controlled by a is restricted.

(4) Construction of Most Representative SLI The I/O automaton built
is input-enabled. It records in I all possible cuts of every scenario. The invariant
of the automaton is: for every word w, if the automaton reads w and ends up
in a state I then, for every ideal c, c ∈ I iff some suffix of w|ΣR

linearizes
c. For instance, in Fig. 6, the center state of the I/O automaton records the
configuration where the last event was get new (from cm to c[1]), as all its
incoming transitions indicate. This means that the prechart of the projected
scenario has been matched and get new (from c[1] to db) is now required from
agent c[1]. Since this event is not forbidden at that state, the Standard Local
Implementation (SLI) rule (see below) allows it to be scheduled.

Definition 9 (Standard Local Implementation (SLI)). Let the projected
specification be composed of m non-empty uLSCs: {S1, . . . , Sm}. An I/O automa-
ton fulfilling the following constraints is called a Standard Local Implementation
(SLI):

〈Σr
a, Σs

a, Q, q0,Δ, {Σr
a}〉
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CommMgr :: cm

get_new

status_up

Client :: c[1]Database :: db

get_new

yes

yes

,no

no

ALT

cm ! get_new ? c[1] c[1] ! get_new ? db

db ! yes ? c[1]

db ! no ? c[1]

c[1]! yes ? cm

c[1]! no ? cm

cm ! get_new ? c[1]

cm ! get_new ? c[1]

cm ! get_new ? c[1]
cm ! get_new ? c[1]

(1) Agent Selection

(3) Scenario projection
(4) Construction of most
representative SLI

(5) Liveness analysis

(6) Refinement search

(2) Sanity check

Fig. 6. Standard Local Implementation (SLI) for c[1]

where

– Q =
∏m

i=1 22Li x, i.e. every state keeps one configuration per uLSC, a config-
uration being a set of ideals.
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– q0 = ({∅}, . . . , {∅}),
– Δ((I1, . . . , Im), e, (I ′1, . . . , I

′
m)) implies both the following statements

1. Δ follows the ideals transition system:
• if e /∈ Σi

R, I ′i = Ii;
• if e ∈ Σi

R, I ′i = {c′|∃c ∈ Ii : c
e−→ c′}∪{∅}. The empty ideal is always

added, because it is linearized by the empty word, which is a suffix of
every word w ∈ Σ∗, thus preserving the invariant.

2. If e ∈ Σs
a, there is some i such that c ∈ Ii requires e and, for every j,

there is no c ∈ Ij forbidding e.

Such an implementation is called “standard” because it follows the classical
way of extracting state machines from MSCs (see sec.6). It is dubbed “local”
because it only considers a single agent, restricting a scenario to the local view
of that agent.

Note that there may exist many SLIs for a given specification, because the
condition on Δ is only an implication. They differ only in the scheduling of Σs

a

events. Thus, it is possible to order SLIs: an SLI A is more general than an SLI
A′ (A′ � A) iff, at every state q, if A′ allows e ∈ Σs

a event, then A allows e,
too.

(5) Liveness Analysis The I/O automaton built according to the SLI rule is
always safe, because the forbidden events may not be scheduled. To show this,
we prove that the hypotheses made by a about the global state are valid:

Lemma 2 (SLIs are sound). Let A be an SLI. Consider a finite run w ∈ Σ∗,
decomposed in two parts uv = w and a scenario Lj. If v|ΣR

linearizes some ideal
c in Lj and A has a run on v|Σa

leading to a state (I1, . . . , Ij , . . . , In), then Ij

contains c|Σa
.

Proof. By induction on w.

Lemma 3 (SLIs are safe). All behaviours induced by an SLI are Σs
a-safe.

Since SLIs guarantee Σs
a-safety, it suffices to ensure that the considered au-

tomaton is Σs
a-live to verify that it is a correct implementation.

Ob::obj1 Ob::obj2 Ob::obj3

a

b
c

d

Fig. 7. Mismatch between causal order and visual order
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Theorem 2. Let A be an SLI. If all runs in A are Σs
a-live, then A is a correct

implementation of a system consisting of agent a.

Proof. By definition 6, if A is Σs
a-live (assumption) and Σs

a-safe (lem.3), it is a
correct implementation.

In general, liveness is not true of all SLIs, because some required event might
be postponed forever, since it is always unsafe. The liveness condition needs to
be algorithmically checked; this is done in time quadratic in |A|: A is analyzed
to check that, on all fair infinite paths, there are infinitely many occurrences
of e or e is not required in infinitely many states, for every e ∈ Σs

a. In fig. 6,
the states in which no event is required are drawn with a double line. This SLI
example is live for agent c[1].

(6) Refinement Search If A� is not a correct implementation, i.e. it is not
live, we can try to find another SLI A such that A � A� and A is live. In order
to do so, we consider refinement as a two-person game, between a “protagonist”
and an “antagonist”. The protagonist may remove some edges labeled by Σs

a

events while the antagonist tries to prove that the resulting automaton is still
unlive. If the protagonist has no winning strategy in this game, there is no live
SLI for agent a. This game can be solved using classical algorithms, in time
polynomial in the size of the graph [GTW02].

Remark 1 (Safety Assumptions). An SLI allows agents to make safety assump-
tions about their environment, which makes compositional reasoning feasible
[AL92]. For instance, when synthesizing agent i, we can make use of the fact
that we know beforehand that agents 1, . . . , k will also be synthesized using the
same method. In that case, when agent i receives an event from another “to-
be-synthesized” agent j, he knows that some ideals of the configuration are not
valid anymore. Indeed, if agent j sends this message, he must be required to do
so. Now, if there is only one scenario which requires him to send j, the agent we
are synthesizing can deduce the exact position in this scenario. For synthesizing
the SLI of fig.6, our algorithm used this assumption.

Remark 2 (Efficiency). By construction, the I/O Automaton built here is neces-
sarily smaller than the automaton constructed in [BS03]. This justifies our claim
that this localized technique can sometimes be more efficient than the exact cen-
tralized one. However, in the worst case, the SLI is as big as the solution for the
centralized case (and thus, exponential in the size of the specification [BS04]).

Our running example is specified with 25 scenarios and contains 8 compo-
nents. Our implementation of the centralized synthesis algorithm fails to analyze
it, because of its size. However, the implementation of the lightweight algorithm
successfully synthesizes an SLI for every component, but cm and db (see the
next remark). cm cannot be synthesized because it participates in all scenar-
ios; projecting the specification on it does not drastically reduce the size of the
specification. The SLIs that we obtained had less than 20 states each and their
synthesis took only a couple of seconds. This synthesis relied on the additional
safety assumptions explained above.
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Remark 3 (A Bad Case). The following specification cannot be implemented
by any SLI. Assume that we have two scenarios for db, asserting that it must
answer either db ! yes ? c[i] or db ! no ? c[i] to all queries of client c[i].
There is no SLI implementing this requirement for db, because the agent must
remember the last request that it replied to. Otherwise, the system runs into
starvation. Consider the following execution: c[1] and c[2] query db. This
leads to some state q. In this state, db answers to c[1]. Immediately after, c[1]
queries db again, going back to q. Since db has no means to remember that it
replied to c[1] before, it replies to c[1] again. Thus, we enter a loop in which
c[2] will never get a reply. Allowing db to use some fixed amount of additional
memory, here one bit, could help in avoiding this situation.

6 Related Work

6.1 Play-Out

The play-out approach [HM03, HM01] is related to ours. The play-out algorithm
works as follows. A state of the system is a set of ideals, called live copies. The
user generates an environment event at a time. Assume that this event is e and
the current state is {c1, . . . , cn}. The following rules apply:

1. For every i (1 ≤ i ≤ n), if ci
e−→ c′i, then ci is replaced by c′i. Otherwise, if ci

is in the prechart, it is dropped.
2. If e labels a minimal location of some scenario Sj , a new live copy for Sj is

spawn. Thus, {l} is added to the next state, where l is the first location in
Sj labeled by e.

If, in the next state, some system events are required but not forbidden, one
of them is picked and performed. This updates the state, which, in turn, can
trigger new events. We followed a similar scheme for designing the SLI rule: an
agent will only schedule e if e is required and not forbidden. However, we use
the global view of the behaviour to avoid being trapped in unsatisfiable states.

6.2 Synthesis from MSCs

Conceptually, the synthesis algorithms of [AEY00, Uch03, Krü00, LMR98] are
very close to ours, except that they apply to MSCs. For every agent, a state
machine is built, which tracks its current position on its lifeline. When it reaches
a position in which the MSC dictates to send an event e, the machine proposes
e. For MSCs, this procedure yields a distributed implementation encompassing
all the behaviours specified by the MSCs. Nevertheless, it is possible that this
distributed implementation is not correct. This happens when the implemen-
tation allows more behaviours than specified by the MSCs. These additional
behaviours are called implied scenarios. Much work has been devoted to detect-
ing and reporting on those implied scenarios [AEY00, UKM01, Uch03, BAL97].
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The picture is slightly different in our case. Our SLIs do not necessarily encom-
pass all the behaviours of the scenario-based specification. Indeed, in step 5 of
our procedure, we detect liveness violations, that is missing scenarios.

The problem of component-based proofs from MSCs is investigated in [FK01],
where causal MSCs are identified.

Algorithms synthesizing state machines from hMSC are able to deal with our
running example. There are two main reasons for this difference in efficiency.
First, synthesizing state machines from HMSCs is just a simple compilation
problem. Our approach is more elaborate, because we have to prove that a spec-
ification is consistent. Second, using hMSCs, analysts have to combine scenarios
to form a coherent whole behaviour, which facilitates the task of synthesis algo-
rithms. In our case, a specification is made of many little scenarios that synthesis
algorithms have to combine to form a correct implementation. This task is com-
putationally expensive.
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Abstract. The continuing trend towards more sophisticated technical applica-
tions results in an increasing demand for high quality software for complex,
safety-critical systems. Designing and verifying the coordination between the
components of such a system in order to ensure its overall correctness and safe op-
eration are crucial and costly steps of the development process. In this paper, we
extend our approach for the compositional formal verification of UML-RT mod-
els described by components and patterns [1], which addresses this challenge.
We outline how scenario-based synthesis techniques can facilitate the design and
verification steps by automatically deriving the required pattern behavior. Start-
ing from a set of timed scenarios, the presented procedure generates a set of
statecharts with additional real-time annotations that realize these scenarios. As
parameterized timed scenarios are supported, different system configurations can
be specified as required by adjusting the behavior using the specific timing con-
straints. The paper describes the proposed approach using a running example and
presents first results obtained using a prototype implementation.

1 Introduction

The ever increasing complexity of technical systems and their software leads to a de-
mand for automated support for the production of high quality real-time software in
this domain. The design and verification of the system coordination is a costly step of
the development of such systems, but crucial for the correctness and safe operation of
the overall system. In this paper, we extend our approach for the compositional formal
verification of UML-RT models described by components and patterns [1], which ad-
dresses this challenge. It uses real-time patterns as a means of structuring the necessary
coordination mechanisms and enabling subsequent reuse.

During the early design phase, a number of scenarios are usually developed to iden-
tify and describe possible or required interaction behavior of the system components
and embedded software. An operational model of the interaction, usually in the form of
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some sort of state machines, is then constructed manually, which is a time-consuming,
error-prone, but essential process.

In this paper, we propose to support and automate the design of the state-based real-
time patterns using scenario-based synthesis. Several approaches exist which permit
the use of the information provided by a given set of scenarios for the synthesis of the
components’ operational state-based behavior (cf. [2, 3, 4, 5]). In the real-time domain,
however, the timing constraints within the scenario descriptions are an essential part of
the specification and need to be transscribed to the synthesized state model.

Several proposals to check timed system models against scenario descriptions with
time have been made (cf. [6]). For actively synthesizing such models from scenarios
including timing constraints, in contrast, only very restricted proposals exist today.
The approach proposed in [7] synthesizes only global solutions in form of a single
automaton for non-parameterized scenarios, which assumes angelic non-determinism
and does not support progress conditions. The approach of [8] results in a global non-
parameterized timed automata which supports progress. It supports, however, only a
very detailed scenario description in form of trees which is already half way between
scenarios and the required operational behavior. In [9] the play-out of life sequence
charts (LSC) with timers is presented. However, the play-out engine also constructs
only a global behavior for non-parameterized LSCs.

In practice, it is difficult to specify all timing information such as worst-case execu-
tion times (wcet), deadlines, or timeouts in advance. The trade-offs between different
alternative parameterizations need to be analyzed, which requires the ability to easily
vary the constraints. With regard to reuse, the need for parameterized patterns is even
more obvious. Our approach therefore supports parameterized timing constraints and
their step-wise refinement.

Addressing the problem of scenario-based synthesis for parameterized real-time
systems in its general form will probably result in scalability problems. For the syn-
thesis problem for real-time patterns considered here, this is different as only the col-
laboration of a small number of roles by means of a managable number of scenarios has
to be considered.

In this paper the ideas of an earlier proposal [10] are formalized and embedded into
our overall approach for compositional design and model checking (cf. [1]) to enable the
systematic development of the real-time coordination at the system level. We support
UML 2.0 sequence diagrams with conditional behavior as input and can generate a real-
time extension of statecharts (RTSC) [11] as its output. RTSC and real-time pattern are
supported by the real-time version of the Fujaba CASE tool.1 RTSC have a well-defined
real-time semantics based on timed automata [12]. Code generation [11] as well as real-
time model checking [13] are currently supported for real-time statecharts.

In Section 2, we introduce an example and our modeling approach, with the cor-
responding notations. The analysis of the parameterized scenarios is then outlined in
Section 3. Section 4 describes how the operational real-time behavior of a pattern can
be derived. The application of synthesized patterns, including the systematic selection

1 www.fujaba.de
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of valid parameter sets and model checking their instantiations, is described in Section
5, followed by our final conclusion.

2 Modeling Approach

Our modeling approach is centered around the idea of composing complex software
systems from domain-specific patterns describing component interaction. A pattern de-
fines structure, by specifying and linking ports representing the roles the respective
components play in that interaction, and behavior, by providing a statechart for each
port. Additionally, it may provide constraints describing a set of desired properties that
must hold for each individual pattern. Concrete components are derived by composing
and refining the roles required by the applicable patterns. The overall system is ulti-
mately created by simply connecting the components at the appropriate ports.

The extensions proposed in this paper pertain to the definition of the patterns and
leave all other aspects of the development process unaffected. The manual construction
of the statecharts for the pattern role protocols is replaced by scenario-based synthesis in
order to make this step faster, cheaper and less error-prone. In the following subsections,
we briefly introduce the concepts and notations that are relevant in this context. While
we will provide some additional insight into the underlying ideas and assumptions,
please refer to [1] for an in depth discussion of the basic approach.

As we present the notations, we introduce the running example used throughout the
paper along the way. We model a watchdog, a well-known approach for monitoring
safety-critical components. If the supervised controller (DistanceController) does not
emit a heartbeat signal in a regular and timely manner, the watchdog (SafetyController)
assumes that the controller has failed and resets it in order to return it to a valid state.

2.1 Real-Time Components and Patterns

Real-time components and the patterns that link them provide the structure around
which our approach is organized. Even though the design process is usually not lin-
ear and new components and patterns may be introduced as it progresses, identifying
potential components is the basis of every iteration. Their relevant interactions can then
be described and formalized as patterns.

When discussing patterns, we abstract from the actual components and represent
them by the roles they perform in the interaction. These are manifested in dedicated,
named ports that provide the corresponding interfaces. If two roles communicate di-
rectly, their ports are linked by a connector. The precise behavioral semantics of the
pattern are provided by attaching real-time statecharts to each of the ports and, in case
they represent asynchronous communication channels, the connectors. Finally, the pat-
tern may be completed with constraints in order to ensure that certain properties hold
for individual ports or the overall pattern. Due to the limited number of implicated
components, verification by means of model checking is feasible for isolated patterns,
asserting whether the constraints may be violated. The central claim is that, by virtue of
a well-defined context and structures that limit side effects, the verified properties are
carried over to the system as a whole.
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<<Component>>

Distance Controller

<<Component>>

Safety Controller

Watchdog Pattern

AG not deadlockAG not deadlock

Controller Watchdog

Fig. 1. The Watchdog Pattern modeled using the CASE Tool Fujaba

In order to achieve this, we need to restrict our notion of a component to the com-
position of a fixed number of role behaviors with well-defined, simple communication
behavior. Though the composition is parallel, behaviors are usually not independent
of each other; i.e. composite behavior that simultaneously and correctly implements
all role specifications needs to be derived by appropriate refinement of the individual
role behaviors. As local verification resolves or at least detects conflicts between roles
within a component, a syntactically correct composition of verified components, using
the provided ports, guarantees correctness of the whole system.

An additional advantage of the approach is that patterns, due to their modular nature
and the abstraction provided by the role concept, promote reuse. If the identified com-
ponents correspond to a previously encountered case, the appropriate, already verified
pattern can simply be applied. In our example, we can easily identify the SafetyCon-
troller and the DistanceController as the relevant components. They interact according
to the Watchdog Pattern, which we will define from scratch. As a simple example for a
required property, we specify that no deadlock may occur anywhere in the pattern. See
Figure 1 for an illustration of the pattern, using standard UML notations.

2.2 Real-Time Scenarios

Now that we have defined the structure of our pattern, we can proceed to formalize our
expectations concerning role behavior. Scenarios lend themselves to this purpose, as
identifying a sequence of events for each concrete case comes more naturally to most
people than reasoning in abstract state spaces.

A number of notations for scenario description techniques with timing constraints
exists, such as UML 1.4 sequence diagrams [6], message sequence charts with timing
constraints, [14], life sequence charts (LSC) with timers [9], or action diagrams (tim-
ing diagrams) [15]. In the different notations, timing constraints are described in quite
different ways (cf. [14, 9]). Timers with reset and timeouts, delay intervals for events
and activities, drawing rules, or timing markers in form of boolean expressions that
constrain particular events or the whole diagram are possible options.

In this paper, we consider only a restricted subset of UML 2.0 sequence diagrams
[16–p. 444] to describe parameterized timed scenarios. UML 2.0 sequence diagrams
permit a duration observation of the form d = duration, which can be used to measure



Pattern Synthesis from Multiple Scenarios for Parameterized Real-Time UML Models 197

the time required for a specific message transfer. In-between two points on the lifeline of
a UML sequence diagram, a duration constraint {l .. u} with a lower and an upper bound
can be specified. Additionally, we can store the current time within a time observation
t = now and later reference this measurement using a timing constraint {t .. t+3}. To
enable the checking of constraints later, we further restrict the supported annotations
for parameters v ∈ Vp, constants A ∈ CONST, and expressions in form of arbitrary
sums over parameters and constants exp ∈ SUM(Vp ∪CONST) as follows: a duration
constraint must have the form {A . . . exp} and a timing constraint must have the form
{to + A . . . to + exp} for a related time observation to = now.

Techniques for conditional behavior such as triggers for sequence diagrams are an-
other relevant aspect of scenarios. They have first been proposed for life sequence charts
(LSC) [9]. Another proposal are triggered message sequence charts (TMSCs) [17]. In
this paper, we use the assert block of UML 2.0 sequence diagrams [16–p. 444] to de-
scribe the conditional behavior of parameterized timed scenarios. An assert block in-
dicates that a specific part of the scenario is mandatory once the preceding sequence of
steps has been observed, which in turn may or may not occur at all. To resolve conflicts
between different asserted behaviors, we further assign priorities to each scenario.

To describe the relationship between the scenarios and states of the participating
roles, we use state labels. We restrict the labels to a single state or sets of possible states.
* denotes all states of a role that are explicitly defined outside the present scenario.
Explicit states can be added to or removed from state sets using + and -, respectively.

For the Watchdog Pattern, we identify four typical behaviors: the normal life cycle
consisting of initialization, regular operation, and shutdown, plus the reaction of the
watchdog when the heartbeat is not received in time.

In first scenario, the controller goes online and initializes the watchdog, as depicted
by the topmost sequence diagram, Initialization, in Figure 2. The regular behavior, which
essentially describes how the controller periodically sends its heartbeat (sane message)
to the watchdog, is depicted in the sequence diagram Regular. To shut down the watch-
dog, a stop message is sent to the watchdog, which subsequently goes offline as shown
by Shutdown, the third sequence diagram. As the last scenario of Figure 2, the sequence
diagram Reset specifies that the watchdog will send a reset message to the controller if
no sane message is received within the time frame {WTL .. wtu}.

2.3 Real-Time Statecharts

A formally defined pattern requires an operational description of the real-time behav-
ior of its roles by means of statecharts. UML 2.0 statecharts do, however, not provide
appropriate modeling concepts to realize real-time constraints. The when- and after-
constructs permit only to refer to absolute time and relative to the point in time when
entering a state, respectively. If more complex timing constraints which involve a whole
sequence of states are considered, these concepts are not sufficient any more. Further-
more, the semantics of the when- and after-constructs of UML 2.0 statecharts require
that the related transitions are executed exactly at the specified point in time. As such a
behavior cannot be implemented on a real physical machine, we require a more appro-
priate state machine notation which ensures realizability. Finally, UML 2.0 statecharts
do not allow combinations of event triggers and timeguards on the same transition.
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Fig. 3. Possible behavior of the watchdog role

Thus, we use the extensions of standard UML statecharts provided by real-time
statecharts (RTSC) [11]. The first extension is an advanced time model which provides
clocks which can be reset when firing transitions or entering/leaving states. The clocks
are used to measure time in relation to these points of time.

Each state has time-invariants which determine the permitted clock values. Let the
set of clocks be denoted by C, a clock by ti ∈ C. Invariants are any logically possible
combination of simple expressions of the form ti ≤ Ti, Ti ∈ N ∪ {∞}. For example,
the state initiateReset in Figure 3 has the time invariant t0 ≤ 150.

The transitions have additional time guards which denote the valid activation times
w.r.t. the current values of the clocks. A timeguard consists of logical combined simple
expressions of the form ai ≤ ti ≤ bi, ai ∈ N, bi ∈ N ∪ {∞}, ai ≤ bi. In the example,
the time guard of the outgoing transition of state initiateReset is [t0 ≤ 150].

A parameterized RTSC (PRTSC) is a RTSC whose clock constraints are not simple
constants, but expressions containing parameters beside the constants.

Two different types of transitions exist. Urgent transitions (solid line) fire immedi-
ately when they are triggered. In contrast, non-urgent transitions (dashed line) can fire
arbitrarily as long as they are enabled. Only when the source-state’s invariant would
otherwise be violated, the non-urgent transition must be executed.2 The execution of
transitions, unlike in standard timed automata models, consumes time. Therefore, the
transitions are also equipped with deadlines which describe when the transition execu-
tion has to finish, and worst case execution times. The deadline can be relative to the
point in time when the transition was fired and absolute by referring to clocks.

Operations are annotated with their WCETs, and transitions are extended by dead-
lines that describe when a transition’s side-effect has to be executed. The deadline is
split into a relative and an absolute part. The relative part is specified by an interval
of the form [dlow, dup] that describes how long the switching, i.e. the execution of the
transition, may take at least respectively most once triggered. The absolute part is of
the form

∧
ti∈C ti ∈ [di

low, di
up] and specifies lower and upper bounds dependant on

clocks. In the example, the transition of state ok which receives the sane event has to
be finished after at least 10 and at most 40 ms.

Figure 3 is a manually constructed statechart for the Watchdog role. It would theo-
retically be possible to prove certain properties for a set of scenarios and then show that

2 This property is used within our approach to denote underspecification of the timing behavior
where required.
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a statechart, which we can verify using model checking, is consistent with them. The
problem is obtaining the latter representation, as transforming and combining several
scenarios into a single statechart can lead to conflicts or inconsistencies and potentially
generates a vast number of superfluous states. Constructing a minimal correct model
yet remains a creative process. In the following sections, we will attempt to facilitate
and support this process and automate it where possible.

3 Scenario Analysis

We begin by formalizing a method for analyzing scenarios. Unlike other approaches
such as [18] that also attempt to extract a system’s structure, we build upon our compo-
nent model and limit ourselves to the extraction of behavioral information.

To formalize the timing constraints provided by a sequence diagram, we map it to
a graph (N,E). Nodes n ∈ N are used to denote the possible states of the roles, and
edges e ∈ E are used to describe how time passes on the lifeline with timing constraints
expressed as sums of parameters from the set Vp and constants from the set CONST
(SUM(Vp ∪CONST)). We further assume a set R containing every role present in any
one of the scenarios. We then map the basic elements of a sequence diagram to this
graph as outlined in the following:

State labels in form of rounded rectangles are used to denote one or multiple states
which are possibly entered at this point in the lifeline of a role. We further assume
that a state label denotes only the point in time when the state is entered, i.e. all time
references to it refer to this unique point in time. Labelling for the nodes is used to
denote the relation between nodes and roles as well as nodes and the related states with
respect to the assigned role.

In sequence diagrams, activities are used to describe the execution of a side-effect.
They are denoted by white rectangles placed on the role’s lifeline. We assume that the
specific execution time of an activity is usually unpredictable. However, lower and up-
per bounds (cf. worst-case execution times (wcet)) l and u can be assumed or explicitly
specified. We use an edge (n, l, u, a, n′) to represent an activity.

The communication in sequence diagrams can be asynchronous or synchronous.
While using asynchronous communication within the sequence diagrams, we assume
that the resulting behavior of each channel can be described by synchronous com-
munication by adding an explicit model of channel behavior describing the internal
buffering and possible blocking. Time bounds for a communication describe the ear-
liest point in time when communication could occur (l) and how long the role will
wait for this communication (u). Wait edges (n, l, u, w, n′) leading to an extra synchro-
nization node n′ are used to represent the communication within both the role and the
channel.

Besides these explicitly visible elements we additionally have glue behavior which
represents the lifeline in-between the other elements. This could include several forms
of time controlled activation such as immediate execution in zero time or a timeout. We
use an edge (n, l, u, g) to represent such a glue behavior that may occur in-between any
of the other elements. It is specifically used to connect the synchronization node after a
communication with the successor element in both roles.
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The restrictions concerning the supported forms of timing constraints, which have
been formulated for the sequence diagrams in Section 2.2, ensure that only a single
measurement is referenced within a timing constraint. We can therefore map it to a
timing constraint with a uniquely determined starting point, when the measurement
is made, and an end point denoted by the constraint itself. Across multiple roles, we
interpret such a timing constraint as an implied check, which denotes an upper and
lower bound (l and u) on the permitted execution time in-between the two specified
points in time. A special edge (n, l, u, c, n′) is used for this purpose. Within a single
role, we employ more constructive timing constraints named restrictions. A restriction
enforces the lower bound, only checks the upper bound, and is represented by an edge
(n, l, u, r, n′).

To reflect the assert blocks within the sequence diagrams, we will represent nodes
which relate to a state within an assert block in the sequence diagram by assert nodes
(Na ⊆ N ) if they have any predecessor node. All other nodes become possible nodes
(Np ⊆ N ).

This formalization is summarized in the following definition:

Definition 1. A time constraint graph (TCG) is a graph (N,E) with N = Np ∪ Na a
set of nodes which are either possible (Np) or asserted (Na) and E = Ea ∪Eg ∪Ew ∪
Er ∪ Ec of the form (n, l, u, x, n′) ∈ Ex with source and target node n, n′ ∈ N , lower
and upper bound expressions l ∈ CONST, u ∈ SUM(Vp ∪ CONST), and a flag x ∈
{a, g, w, r, c} denoting whether it is an activity (a), glue (g), wait (w), restriction (r), or
check (c) edge. Each node is either possible (Np) or asserted (Na). For the set of nodes
we further distinguish state (Ns) and communication nodes (Nc). A surjective state
labelling ls : Ns → ℘(S) and role labelling lr : Ns → R with ls(n) ⊆ Slr(n) must
further assign roles and states to all state nodes. The role labelling implies the node
sets Nri

of all nodes relating to role ri. We further require that each communication
node is only connected with nodes of two roles and can only be the target of wait edges
and the source of glue edges.

A sequence of edges e1; . . . ; ek with ei = (ni, . . . , ni+1) and ei+1 = (ni+1, . . . , ni+2)
is named a path. We write n1[e1; . . . ; ek〉∗nk+1 and n1[e1〉n2 for k = 1. For conve-
nience, we may also skip the specific path and write n[〉n′ resp. n[〉∗n′.

Due to the outlined distinction between possible and asserted nodes, we distinguish
the following cases for edges: An edge is possible iff its source and target nodes are
possible. It is asserted iff its source node is asserted. An edge leading from a possible
to an asserted node is a trigger.

The outlined mapping is done automatically in our prototype tool. An example for
the mapping of the sequence diagrams to TCGs is presented in Figure 4 where the TCG
of the shutdown scenarios of Figure 2 is presented. When visualizing the graph, we
label the arc simply using the lower and upper bound expression as well as the edge
type. The possible nodes are depicted by grey nodes while the asserted nodes are white
(see Figure 4 for an example).
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3.1 Checking Consistency and Locality

For a given evaluation [[·]] : SUM(Vp ∪ CONST) → IR0 for the expressions for the
upper and lower bound l and u of an edge, we can determine the concrete lower bound
as [[l]] and [[u]], respectively.

Definition 2. A timed run of a given TCG (N,E) is a surjective function δ : E → IR0

which assign a delay to each edge such that for all e = (n, l, u, x, n′) ∈ E holds
[[l]] ≤ δ(e) ≤ [[u]] (edge conform) and for any two e = (n, l, u, w, n′′) ∈ E and e′ =
(n′, l′, u′, w, n′′) ∈ E holds [[l]] = δ(e) or [[l′]] = δ(e′) (urgent).

For timed scenarios, a first serious problem is consistency. A scenario is consistent if
a time consistent behavior exists for it. In [19], an efficient decision procedure for this
problem has been presented, which maps the question whether a timing behavior that
fulfills all constraints exists to computing negative cost cycles and shortest distances in
weighted digraphs. For the parameterized case we can define consistency as follows:

Definition 3. A run r is consistent for an evaluation [[·]] iff for all two alternative paths
e1; . . . ; en and e′1; . . . ; e

′
m between two nodes holds

∑n
i=1 δ(ei) =

∑m
j=1 δ(e′j). The

set of all conform, consistent, and urgent timed runs for a given TCG and an evaluation
[[·]] is denoted as Δ((N,E), [[·]]). We say that a parameterized scenario is consistent if
an evaluation [[·]]1 exists with Δ((N,E), [[·]]1) �= ∅.
Consistency alone, however, does not take into account that the timing of parallel tasks
can in reality only depend on their interaction in the past. The notion of causality [15]
thus demands that a realization exists that can ensure correct operation without global
knowledge or knowledge about the future. A somehow closed fragment of a TCG which
can be used to describe the history is an inital segment:

Definition 4. A subgraph (N ′, E′) of an TCG (N,E) is a segment iff N ′ ⊆ N , E′ ⊆ E
with E′ = E ∩N ′ ×N ′, and for all n, n′ ∈ N ′ and n′′ ∈ N with n[〉∗n′′ and n′′[〉∗n′

holds n′′ ∈ N ′.
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An initial segment contains all initial nodes (n ∈ N with N × {n} ∩ E = ∅).
While the general notion of causality assumes that the future behavior of each

edge could depend on all preceding edges (the full history which could in principle
be known), we further restrict the considered history to the explicitly defined states.
Therefore, we assume for a given history all next activity or glue edges are behave
randomly, but respect additional constraints in form of restriction edges as well as the
state-specific bounds. We name this property, which implies causality, locality.

Definition 5. A TCG respects locality for an evaluation [[·]] iff for any initial segment
(N ′, E′) holds that any consistent and urgent timed run δ ∈ Δ((N ′, E′), [[·]]) can be
extended respecting an arbitrary time annotation δ+ : ((Ea ∪ Eg) ∩ (N ′ × (N −
N ′))) → IR0 for any N ′′ ⊇ N ′ ∪ {n ∈ N |∃n′ ∈ N ′ : (n′, n) ∈ Ea ∪ Eg} and
E′′ = E ∩N ′′ ×N ′′ to a consistent and urgent timed run δ′ ∈ Δ((N ′′, E′′), [[·]]) such
that for all e = (n, . . . , n′) ∈ ((Ea ∪Eg)∩ (N ′ × (N −N ′))) holds δ′(e) = δ+(e) or
δ′(e) > δ+(e). In the second case, an e′ = (n′′, l, u, r, n′) ∈ ((Er)∩ (N ′× (N−N ′)))
with δ′(e′) = [[l]] must exist.

The definition ensures that for each history any possible local choice (maybe delayed
due to local restriction constraints) leads again to a consistent behavior.

For the case of parameterized timing constraints, we even have to consider the de-
pendencies which result from parameters which are present in the different scenar-
ios which should be composed. To address the problem of consistency and locality,
we use linear inequalities. For n variables v1, . . . , vn ∈ V over IR a system of lin-
ear inequalities is defined by m inequalities with coefficients αi,j ∈ IR of the form
αi,1v1 + . . . + αi,nvn ≤ bi. A set of linear inequalities is only feasible iff an assign-
ment for all vi exists which fulfills all m inequalities. When additionally a linear cost
function f : V → IR is defined, we have a linear optimization problem which can be
solved by the well known simplex algorithm.

To check for consistency, we have to derive a set of inequalities which describe
the execution time dependencies. This includes all subgraphs of the TCGs which result
from the start and end node of restriction and check edges. In addition, for each com-
munication by means of two wait edges, the related preceding subgraphs (which start
with a single node and reach this node without ever having a front with less than two
nodes) has to be considered to detect possible timing problems.

We then have to determine the timing dependencies for each non separatable seg-
ment (N ′, E′) with unique start and end node. They are characterized at first by a
pair of nodes n, n′ ∈ N ′ such that n has no predecessor and at least two successors
(|{n′′ ∈ N ′|n[〉n′′}| ≥ 2) and n′ has no successors and at least two predecessors
(|{n′′ ∈ N ′|n′[〉n′′}| ≥ 2). In addition, (N ′, E′) cannot be separated into two uncon-
nected subgraphs by eliminating a single node (there exists no n′′ ∈ N ′ such that for
(N ′ − {n′′}, E′ ∩ (N ′ − {n′′})× (N ′ − {n′′}) holds n � [〉∗n′).

For each of these subgraphs, we start the propagation by assigning (0, 0) as the
upper and lower bound to the initial node n. Note that due to the occurrence of the same
parameters within the different subgraphs the resulting inequalities are also related.

To propagate the minimal and maximal execution times, we use constants, variables,
and sums over variables which are assigned to each node. Such an assignment (A, b)
determines an upper bound described by the constant A and a term b describing a sum
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over variables. We further have variables representing scenario parameters (Vp) and
temporary variables (Vt) which are employed to propagate the timing dependencies.
For each specific edge leading from a node n with the assigned bounds (A, b) to a node
n′, we proceed as follows to describe the propagation of the minimal and maximal
execution times:

(P1) In case of an activity edge (n, L, u, a, n′) or glue edge (n, L, u, g, n′), we as-
sign (A + L, b + u) to n′. We simply propagate the minimal resp. maximal value plus
the minimal resp. maximal delay.

If two edges lead from nodes n and n′ with assigned bounds (A, b) and (A′, b′) to a
node n′′, we proceed as follows:

(P2) For two waiting edges (n, L, u, w, n′′) and (n′, L′, u′, w, n′′), we add a new
variable vt ∈ Vt and two inequalities vt ≥ b + L and vt ≥ b′ + L′ and finally assign
(max(A + L,A′ + L′), vt) to n′′. While the lower bound is obviously determined by
the maximum of both lower bounds, the upper bound would have been correctly de-
rived as the maximum of b + L and b′ + L′. As b and b′ are terms rather than constants,
we cannot determine the maximum directly. Instead, we use an additional temporary
variable vt for which we establish that vt ≥ max(b + L, b′ + L′) holds. By further
adding only inequalities of the form . . . + vt + . . . ≤ . . . we can ensure that the ability
of vt to also become larger than max(b + L, b′ + L′) cannot result in false positives.
It is noteworthy that the employed system of linear inequalities will not result in false
negatives either, as any solution for vt implies that vt = max(b + L, b′ + L′) is also a
correct solution.

(P3) In the case of an activity edge (n, L, u, a, n′′) or glue edge (n, L, u, g, n′′) and
a restriction edge (n′, L′, u′, r, n′′) we assign (max(A + L,A′ + L′), b + u) to n′′. The
lower bound is determined by the maximum of the lower bounds of both alternatives, as
the restriction will enforce this lower bound. For the upper bound, the activity or glue
edge is simply propagated.

(P4) Finally, for an activity edge (n, L, u, a, n′′) or glue edge (n, L, u, g, n′′) and
a check edge (n′, L′, u′, c, n′′) leading from n resp. n′ to n′′, we only propagate the
delays and assign (A+L, b+u) to n′′. We simply propagate the minimal resp. maximal
value plus the minimal resp. maximal delay as in the case of a single edge.

Besides the propagation, we have to additionally include the following check for the
final node n′′ if it describes a communication:

(P2*) For two waiting edges (n, L, u, w, n′′) and (n′, L′, u′, w, n′′) with (A, b) and
(A′, b′) assigned to n resp. n′, we additionally add A + u ≥ b′ + L′ and A′ + u′ ≥
b + L to the set of inequalities. We thus check that the timing of two participants of the
synchronous communication cannot exclude the communication, e.g. because one side
already has a timeout while the other one is not yet ready.

For restriction and check edges, we have the special case that the restriction or check
edge can only have the final node as target node if they also have the initial node as
source node.3 We thus have:

3 Otherwise, the considered subgraph can be separated into two unconnected subgraphs by elim-
inating the source node of the restriction or check edge, which contradicts the selection criteria
for the subgraphs.
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(P3*) In the case of a restriction edge (n, L, u, r, n′) with (0, 0) and (A, b) assigned
to the initial node n resp. final node n′, we additionally add b ≤ u to check the upper
bound. As the lower bound is guaranteed by the restriction itself, we do not have to add
any check for this case.

(P4*) Finally, for a check edge (n, L, u, c, n′) with (0, 0) and (A, b) assigned to the
initial node n resp. final node n′, we additionally add A ≥ L for the lower bound and
b ≤ u for the upper bound.

Locality Checking Algorithm: We check whether a set of TCGs is consistent and
respects locality as follows:

1. For all non-separable segments with unique start and end node of all TCGs do:
(a) propagate the lower and upper bound using the rules (P1) – (P4) and,
(b) add the checks (P2*) – (P4*).

2. Check the resulting system of inequalities for feasibility.

If such a feasible solution exists, we have found a witness for the consistency of the
combination of all timed scenarios which also respects locality.

For our Watchdog Pattern example and its four UML sequence diagrams presented
in Figure 2, the Java-based tool prototype requires only 300 ms on a standard PC to
generate the linear inequalities for 7 subgraphs. Solving the resulting system of 89
inequalities took only 20 ms using a Java implementation of the simplex algorithm.

3.2 Excluding Conflicts

Another class of problem arises when we combine multiple scenarios. While the checks
outlined above ensure that an evaluation exists which fulfills the requirements of all sce-
narios, the consequences of overlapping have not been taken into account. The analysis
of such problems is restricted by the fact that model checking the overall synthesized
parameterized behavior is not even possible.4 We therefore restrict our attention to in-
complete but feasible checks which do not take reachability into account. The checks
only report problems which are relevant (no false negatives) but may result in false pos-
itives. These false positives are addressed later in the process by model checking when
specific parameter settings are given.

We can further classify such problems as behavioral conflicts or timing conflicts.
While the former two already result within an untimed behavioral model, the latter
relates to the timing of alternative behaviors.

To address the outlined class of problems, alternative behaviors for a single state
which contradict each other have to be detected and resolved. Each such state s ∈ S
relates to the TCG nodes with the corresponding state label (all n ∈ N with s ∈ ls(n)).
As restriction and check edges only declare required timing constraints but do not result
in transitions, we can restrict our further considerations to operational edges, which
leaves only the activity, glue, and wait edges.

4 Emptiness for parameterized timed automata with more than 2 parameters has been proven
to be undecidable by reducing the halting problem of 2-counter machines to it [20]. By a
similar encoding via scenarios with related state labels, the same problem can be reduced to
the synthesis problem which excludes time-stopping deadlocks.
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Respecting priorities and assertions, the combination of the scenarios implies that
asserted operational transitions exclude any other operational transition with lower pri-
ority. The same holds for any activity edge or send edges.

(C1) If a state s ∈ S exists with one asserted operational edge, one activity edge,
or one send edge and an additional edge which has a lower or equal priority, we have a
behavioral conflict. The designer has to modify the scenario priorities and state labelling
of all TCGs thus that the conflict is resolved. It is to be noted that such modifications
can result in a node without any valid state label which disables the respective scenario.
If no set of modifications that does not disable any of the scenarios can be found, we
have an unresolvable conflict.

Besides the outlined problems which arise independently from the time dimension
in the abstract model, we have to ensure that the timings of the different edges preempt
each other as specified by the priorities.

(C2) If we have a trigger wait-edge (n, L, u, w, n′) which additionally requires an
event e, for all edges (n′′, L′, u′, w, n′′′) with s ∈ l(n) ∩ l(n′′) and lower priority that
also require the event e, we have to check L′ ≤ L directly. If it is fulfilled, we replace
the wait-edge by two alternative edges (n′′, L′, L, w, n′′′) and (n′′, u, u′, w, n′′′) such
that the preemption is respected. If it is not fulfilled, we replace the wait-edge by the
edge (n′′, u, u′, w, n′′′) and add u ≤ u′ to the the set of inequalities to ensure that
(n′′, u, u′, w, n′′′) can occur.

(C3) For a trigger glue-edge (n, L, u, g, n′), for all edges (n′′, L′, u′, x, n′′′) with
s ∈ l(n)∩l(n′′) and a lower priority, we have to add u′ ≤ L to the the set of inequalities
in order to ensure that they are preempted by the first edge, which will in turn ultimately
be enforced by the corresponding state invariant (cf. Section 4).

If we have multiple edges with the same priority or possible edges, the outlined
conflict resolution rules result in non-deterministic behavior which simply includes all
alternatives.

Conflicts Resolution Algorithm: For each state s ∈ S, we store all edges in a dedi-
cated list, sorted by the priority. We then proceed as follows:

1. Apply the rules (C1), (C2), or (C3) to the first element of the list.
2. Remove the element and return to step 1, until all edges are processed.

This results in an extended system of linear inequalities which must then be checked to
ensure that the specified trigger edges of one scenario are not fully disabled by another
scenario due to the timing constraints. Additional inequalities L + Δ ≤ u for all opera-
tional edges and a minimal triggering time Δ further ensure that every edge can still be
triggered. We can then use the systematic exploration of the set of inequalities to detect
which edges are excluded by timing conflicts.

As our example contained no conflicts, the additional processing resulted in merely
two additional equations. Generating these additional equations took 10 ms, and solving
the extended system of linear inequalities took 25 ms. The new equations thus only
result in an extra effort of 15 ms.
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4 Pattern Synthesis

For a consistent set of TCGs without conflicts we can also derive the synthesis result
for the watchdog pattern (cf. Figure 1).

Like most approaches proposed for the synthesis of a distributed implementation
(cf. [2, 4, 5]), we only consider the local knowledge present for each role in the scenar-
ios. Therefore, our synthesis algorithm is efficient but incomplete. If the logical flow of
events of a given timed scenario can be observed for the synthesized set of RTSC, we
can ensure that the specified timing constraints of the scenario are met. We have, how-
ever, to check additionally whether the synthesis results excludes time-stopping dead-
locks and whether implied behavior emerges due to the interaction of the synthesized
RTSCs (cf. [21]).

The synthesis algorithm starts with the TCGs which result from the analysis of po-
tential conflicts outlined in Section 3.2. The mapping to states is simply derived for
each node n ∈ N using the state labelling ls(n) ⊆ Slr(n). For glue edges, we add
corresponding non urgent transitions, while the activity edges become urgent ones. The
communication expressed by a wait edge, a synchronization node, and a local process-
ing step is collapsed into a single urgent communication transition in both related pro-
cesses. For a local edge, the time conditions simply result in a time guard and deadline
such that the specified timing behavior is possible. In a similar fashion, the mapping for
the wait edges results in a time guard which ensures the lower and upper time bound.

The timing restrictions of the edges, which are described by the upper and lower
time bounds on the TCG edges, are addressed by referring to a special clock t0 which
is reset when entering any state. For the transition of an activity edge (n, L, u, a, n′),
the lower and upper bound simply become the relative deadline [L, u] →. The guard
becomes true and is thus omitted. For any transition (n, L, u, g, n′) which represents a
glue edge, the role specific fixed execution time d is used as relative deadline [d, d] →
and the guard becomes [L−d, u−d]. A wait edge (n, L, u, w, n′) results in a transition
with the related event, guard [L, u] and deadline [d, d]→.

Another aspect of the synthesis is the treatment of timing checks and restrictions.
Timing checks are established by the consistency checks as outlined in the preceding
sections. The restrictions limit the possible timing of the lower bound and therefore
have to be ensured by the synthesized real-time statecharts. A restriction (n, L, u, r, n′)
which runs in parallel to a single activity, glue, or wait edge simply results in us-
ing the specified bounds for that transition. In the more complex case of restrictions
which do affect a series of TCG edges, we use an additional clock tr which is set to
zero when the initial node of the restriction edge is entered ({tr}). This clock is used
to adjust the time guards of the last transition of this series of TCG edges such that
the overall restriction is enforced for the lower bound by adding tr ≥ L to the time
guard. Due to space constraints, only a one-edge restriction occurs in the presented
example.

To ensure progress within the statechart for the non-urgent transitions, we finally
derive the state invariant for each state. We store the edges for every specific state s ∈ S
in a list sorted by the priority and start with an empty upper bound list. We then proceed
as follows:
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1. While the edge list is not empty, enqueue the first edge and process it as follows:

(a) If case (C1) can be detected, report an error and quit.
(b) If rule set (C2) can be applied, then add the upper bound to the upper limit lists

and erase all wait edges with the same event from the edge list.
(c) If rule set (C3) can be applied, then add the upper bound to the upper limit lists

and empty the edge list.

2. Assign the or-combination of all elements of the upper bound list as the state in-
variant.

Due to the outlined construction of the state invariant, each state is eventually left, if the
required communication is offered or a timeout is reached.

We can further reduce the synthesis result using the following syntactic rules: (R1)
If two states s and s′ exists such that the set of outgoing edges is equal (always an
edge with the same time constraints and target states exists), we can unite both states.
(R2) If a non-empty subset S′ of the state set S and a non-empty subset E′ of all
edges E exists such that all elements s ∈ S′ have the same outgoing edges within
E′ w.r.t. all states s′ ∈ S − S′ outside this state set, we introduce a superstate for
all states s ∈ S′ such that all edges of E′ are are realized by this superstate and
can consequently be erased for the single states of S′. (R3) If a state s with a sin-
gle urgent transition t with deadline [L, u] and without time guard and event exists
(which may result from an activity edge) that leads to a state s′, we can erase the
state s and adjust all transitions t′ leading to s by adding the side effect of t, up-
dating their deadlines [L′, u′] simply to [L + L′, u + u′], and redirecting them to s′.
(R4) If a state s with a single non urgent transition t with deadline [Ld, ud], time
guard [Lg ≤ t0 ≤ ug], and without event exists (which may result from an glue
edge) that leads to a state s′, we can erase the state s and adjust all transitions t′

leading to s by adding the side effect of t, updating the deadline [L′, u′] to [L′ +
Lg + Ld, u

′ + ug + ud] and pointing them at s′. (R5) If no transitions leaving a
state s requires the special clock t0, we can remove the enter: {t0} action for that
state.

The application of these syntactical rules erases four states from the watchdog’s
real-time statechart and results in the model depicted in Figure 5.
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Fig. 5. Synthesized parameterized real-time statechart of the watchdog
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5 Applying a Pattern

When a pattern realizing the required real-time coordination has been constructed, what
remains to be done is (1) to adapt the parameters to the concrete requirements, (2)
to check the resulting non-parameterized real-time behavior for anomalies, and (3) to
realize the component-specific behavior by refining the applicable roles as required.

The analysis outlined in Section 3 further supports the identification of a valid pa-
rameter set for a given pattern. For example, an upper bound for the detection of the
timeout and initiation of a controller reset by the watchdog of the form RDU + wtu ≤
1000 may be added. We can then check whether a consistent solution for the pattern
and this constraint in form of a linear inequality exists.

In Figure 3 earlier in the paper, the RTSC which results from the RTSC in Figure
5 for the parameter setting dwa = 10.0, wWaChR = 150.0, wWaChSD = ∞,
wWaChI =∞, wWaChS =∞, WDU = 100.0, doErU = 600.0 doErL = 500.0,
WCU = 40.0, OFFU = 75.0, and D wa2 = 0 is depicted.

Once an appropriate and valid parameter setting has been determined, we use the
model checking capability of the real-time version [13] of the Fujaba CASE Tool to
ensure that the synthesis result for the given parameter values is free from deadlocks or
time stopping deadlocks.

After the pattern is successfully model checked, the component behavior can be
derived. The real-time statecharts for each pattern role are underspecified as they de-
scribe all possible correct behaviors of the role with respect to synchronization and
timing. To derive the final operational behavior we are, however, free to reduce the non-
determinism still present in the model where useful. For example, the rather large time
frame between a possible detection of the timeout and the latest point in time when the
timeout has to be detected may be subject to refinement.

6 Conclusion

We present how our approach for the development of correct real-time systems with
components and patterns, which enable the compositional verification of real-time prop-
erties, can be supplemented by a scenario-based synthesis techniques for parameterized
timed sequence diagrams with conditional behavior.

Static analysis ensures consistency and locality (causality) for a given set of pa-
rameterized scenarios. Conflicts can be also detected by extending the analysis results.
The synthesis of a parameterized real-time pattern and its real-time behavior in form of
parameterized real-time statecharts for each role further completes our approach.

When applying the pattern, appropriate parameter setting can be derived using the
outlined analysis approach. The developer can thus systematically study the trade-offs
between different parameter sets. Problems due to the reachability remain to be proven
using real-time model checking after setting all parameters.
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Abstract. There are many formalism for mobile system specification, but until 
very recently, there was no satisfactory graphical notation for modelling of such 
systems. In a previous paper, we have introduced the so-called Sequence 
Diagrams for Mobility (SDM), a graphical notations based on UML Sequence 
Diagram. This notation has been used in several case studies and proved very 
useful. In this paper we introduce a formal, partial order based semantics for 
SDM. We define the notion of run and show how to figure out the system 
topology from the information contained in a run. We formalize the zoom-out 
abstraction mechanism introduced in a previous paper and show that its 
application does not depend on the particular order it is applied. We formalise 
also the notion of lifeline introduced informally in the previous paper. We 
integrate our semantics with UML2.0 and show that they fit well together. We 
explain our approach using series of examples.  

1   Introduction  

The developments in areas of communication and information technology allow one to 
equip tools, with processors and software to facilitate their use. The tools used in 
everyday life are getting more and more smart due to build in electronic. One of the 
most important new concepts is the concept of mobile systems and of mobile 
computation. Code mobility, which emerged in some scripting languages for controlling 
network applications, is one of the key features of the Java programming language. 
Agent mobility has been supported by Telescript, AgentTcl, or Odyssey (cf. e.g. [7]). In 
addition, hardware can be mobile too: Mobile hosts such as laptops, handhelds and 
PDAs can move between networks. Moreover, entire networks can be mobile as well, 
such as for example IBM's Personal Area Network (PAN) and networks of sensors in 
airplane or trains. Mobile computations can cross barriers and move between virtual and 
physical locations. The goal is to turn remote calls into local calls to avoid the latency 
caused by communication. But there is a price to pay since the administrative barriers 
and multiple access pathways interact in very complex ways.  

These developments lead to enormous challenge of designing and configuring 
mobile and distributed systems that interact to achieve expected tasks. At the moment, 
this is a field of a very active multi disciplinary research. There are several aspects of 
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such systems requiring different approaches. Specification, modelling and design 
belong to the most challenging ones. There exist several formalisms for specification 
of mobile systems (cf. e.g. [5, 4]), but until very recently, there was no satisfactory 
graphical notation for modelling mobile systems. Graphical Modelling Languages are 
influencing a great impact on the software development, but in the case of mobile 
systems, this aspect was neglected. These systems require special means for the 
modelling, specification and implementation.  

Recently the gap was filled by designing appropriate graphical UML based 
notations. The so-called Sequence Diagrams for Mobility (SDM) [10] is a trace based, 
Sequence Diagrams like notation for the specification of mobile computation. There 
exists also an extension of UML Activity Diagrams for modelling of mobile system 
behavior [2]. The idea is similar to the idea of Ambients [4], in that a mobile object 
can migrate from one host to another and at the same time such an object can host 
other mobile objects. Like a place, a mobile object can host other mobile objects; it 
can locally communicate and receive messages from other places. Objects can be 
nested in an arbitrary way, generalizing the limited place-agent nesting of most agent 
and place languages. This concept generalises the Use Case Maps [3] in that we 
graphically model an object moving from one location to another, but also we allow 
moving objects to play the role of locations. The SDM notation generalizes the notion 
of object lifeline as defined in UML Sequence Diagrams [12].  

One of the most important principles in science is the principle of abstraction. 
Ideally, there should be a notation allowing for displaying relevant and hiding 
irrelevant information. It should provide the possibility to abstract from features, 
which are irrelevant at a given stage of development. In the previous paper we have 
introduced a powerful mechanism for hiding irrelevant information [10]; the so-called 
zoom-out mechanism allows us to abstract from internal details of selected objects; 
we call such objects boundary. In particular, it allows us to hide the objects located in 
boundary objects and their behaviour. Similarly, we have introduced the so-called 
zoom-in mechanism for displaying details of objects and their behaviour.  

The extension of Activity Diagrams [2] is very close to its origin, it uses only few 
new primitives form modelling of mobility and extends the standard UML notation a 
bit. The new primitives are defined using stereotypes, the standard UML extension 
mechanism. The SDM notation extends UML Sequence Diagrams in much more 
radical way and cannot be reduced so simply to the standard UML. Therefore in this 
paper we introduce formal partial order semantics for SDM only. We formalize the 
temporal ordering of event occurrences using partial order relations, more precisely 
quasi orders. The information stored in messages is accessible via labelling functions 
defined on elements of the partially ordered set. We show how to systematically 
define such models for SDM diagrams. We formally define the notion of lifeline, 
introduced in [10]. We have given some examples of its use, but we were not able to 
define it precisely there due to lack of proper terminology. Our formal semantics 
allows us to define it now in precise formal terms. We define the notion of a run and 
show how to figure out the system topology from the information contained in a run.  

The tricky part in our semantics is the definition of object’s location. We define 
locations only for objects participating in an event occurrence. Locations of other 
objects not related to the event occurrence are not fixed. For example, if an event 
occurrence is not temporally related to a move, then the move can happen before or 



214 P. Kosiuczenko 

 

after the event occurrence and the location of the moving object should not be fixed 
during the move.  

The definition of our semantics is based on well defined topological artefact such 
as cross points, arrow directions and the relation of being located inside. Let us point 
out that there exist some formal partial order based semantics of Message Sequence 
Charts (MSC) [6], a graphical notation analogous to UML Sequence Diagrams (cf. 
e.g. [9]). MSC are a subject of a very intense research (cf. e.g. [11]).  

We define semantics of the abstraction mechanism. The idea is to abstract from 
the information concerning hidden objects but to keep the partial ordering on visible 
communication events. We show, that the order, in which this mechanism is applied, 
does not matter. The local definition of object’s location works fine also for the 
abstraction mechanism.  

We show that our semantics fits very well to the concept of interaction defined in 
UML 2.0. Interestingly enough, the concept of SDM fits well to UML 2.0, but it was 
really hard to integrate with earlier versions of UML. We integrate the notion of 
partial order and run with the notions of trace and GeneralOrdering from UML 
2.0. We formalise also the notion of lifeline as it is defined in UML 2.0.  

Our paper is structured as follow. Section two presents the basic ideas of Sequence 
Diagrams for Mobility. In section three we define the formal model, which is the base 
of our semantics; we show how to define the semantics for concrete SDM diagrams. 
In section four we formalize the notion of abstraction. We conclude our paper with 
some remarks on the applications of our semantics.  

2   The SDM Notation  

Mobility is the ability to cross barriers. In our approach, a mobile object is also a 
location where interaction may happen. Action boxes are indicated by different 
locations. The action boxes describe what is inside and what is outside; they allow 
one also to show in a transparent way message exchange and object’s migration. 
Locations can be arbitrarily nested and form a tree structure, this is aimed at 
modelling firewalls, administrative domains networks and so on. For example, a 
personal area network may be located in a car, which is located in a ferry; the ferry 
may enter a harbour and so on. We assume that the nested structure has the form of 
forest, i.e. an object can be located in at most one object and there no cycles of objects 
such that one is contained in another.  

In the paper [2], we have introduced the stereotype <<location>>and the 
stereotype <<mobile>> to specify objects which can play the role of locations and 
objects which can be mobile, respectively. Each object of a class having stereotype 
<<mobile>> possesses attribute atLoc; this attribute has values of a class having 
stereotype <<location>>. If an object is not mobile, it does not possess this 
attribute. The idea is that a change of location of a mobile object is modelled by the 
change of the attribute atLoc. Objects which are locations only, and in general 
objects, which are not stereotyped with <<mobile>>, do not possess this attribute.  

Mobile objects may interact with other objects by sending messages and changing 
locations. In UML, objects can communicate in synchronous as well as asynchronous 
 



 Partial Order Semantics of Sequence Diagrams for Mobility 215 

 

way. We stick to this principle. Unlike Ambients Calculus [4], in our notation it is 
possible to express actions at a distance even if many barriers are involved.  

A description of a mobile object’s behaviour starts with a box containing 
optionally the object name and/or its class. A mobile object may move into another 
object, or move out of an object. If an object moves into or out of another object, then 
the action box ends in the former location and the object is moved to another location. 
This move is indicated by a stereotyped message arrow which starts with a black 
circle; we call it move arrow.  

A mobile object cannot continue its operation outside a host, if it is already inside 
another host; consequently, the arrow starts strictly at the end of the first action box to 
indicate that all action in the box must precede the move. The start of operation of a 
mobile object (and if this object was not active before elsewhere) is indicated by a 
box as in the case of sequence diagrams. We indicate the end of mobile object 
description by two horizontal lines, where the upper line is dashed. Let us point out 
that it does not mean that the object was terminated (cf. [10]). 

Fig. 1. Object mobility  

Fig. 1 shows what a mobile object looks like. The passenger ps enters airplane 
ap. Since there is no conflict concerning the identity of objects inside ap; the 
corresponding action box does not bear any name. Than ps deplanes ap and starts its 
operation outside ap. The name in the last action box is not necessary either, since the 
identity of ps can be uniquely traced [10]. No message arrow is attached to the action 
boxes except of the move.  

Fig. 2. Object copying and cloning  

Fig. 2 shows a virus v located in PC 131. The virus proliferates attacking other 
PCs. We use here a message arrow with UML stereotype <<copy>>, the copied 
virus v' is assumed to behave as its origin would do inside the new location (cf. [12]).  
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3   Partial Order Semantics  

In this section we introduce partial order semantics for SDM. We define a 
mathematical model containing a partially ordered set and a number of labelling 
functions, which allow us to extract information from the elements of this set. We 
present a general method of extracting such models from SDM diagrams. We show 
how to apply this method to concrete SDM diagrams. We formally define the notion 
of lifeline.  

3.1   The Formal Model  

In this subsection we define the formal model which will be the base of our 
semantics. The model is based on a partial order formalizing temporal relationship 
between event occurrences; it contains labelling functions for extracting information. 
This model is constructed in a similar to the partial order semantics of Message 
Sequence Charts (cf. e.g. [9, 11]). The tricky point in our semantics is the definition 
of object locations. We define locations only for objects participating in an event 
occurrence; locations of other objects not related to the event are not fixed. For 
example, if an event occurrence is not temporally related to a move, then the move 
can happen before or after the event occurrence and the location of the moving object 
should not be fixed during the move. If the object moves from location a to location 
b, then when the event occurs it can be in a or in b (see below).  

According to UML 2.0 [12], an InteractionFragment consists of a number 
of so-called GeneralOrderings. A GeneralOrdering represents an ordering 
of two event occurrences; it specifies that one event occurrence must proceed the 
other in a valid trace. This concept provides the ability to define partial orders of 
event occurrences. In UML, a message is a specification of a particular 
communication between instances in an interaction. A communication can be raising 
a signal, invoking an operation, creating or destroying an instance. Message specifies 
not only the kind of communication, but also the roles of the sender and the receiver, 
the dispatching and the relative sequencing of messages within the interaction. A 
message may have two message ends corresponding to two event occurrences: 
sending and receiving of a message (cf. Fig. 3). Event occurrences corresponding to 
message ends can be ordered using GeneralOrdeing.  

Fig. 3. UML event diagram  

Our model is a tuple of the form: (E, , e
0
, lab, p, lP). The binary relation  is a 

quasi order, in particular a partial order. It corresponds to UML GeneralOrdeing. 
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Conceptually, E is the set of event occurrences. We consider here four kinds of 
events: send event, receive event, method or constructor return and cross event; the 
last one corresponds to the event of crossing objects boundary1. Further, we identify 
three kinds of send events: message send, method call, constructor call, object 
departure and send message. Similarly, we identify three kinds of receive events: 
message receive, method start, constructor start, object arrival and receive message. 
The relation  defines temporal ordering of such event occurrences. We assume that, 
there exist an initial, auxiliary, event occurrence e

0
, which we use to define the initial 

topology of a mobile system (see below). This event precedes all other event 
occurrences, i.e. for all e  E, e

0 
 e.  

An event occurrence includes information about the values of all relevant objects 
at the corresponding point in time [12]. In our model, the information corresponding 
to an event occurrence can be accessed using labelling functions. There are three 
labelling functions: lab, p and lP.  

The function lab labels elements of the set E specifying the corresponding 
communication kind; it can be sending or receiving of a message, method call or 
return and so on (we have listed the types of events above):  

lab : E  EventKind  
Every communication involves some objects; for example a message or a moving 

object may cross several object boundaries. The function p identifies objects 
participating in an event occurrence; it returns a finite set of event participants:  

p : E  Fin(ObNames)  
We assume that in the case of object departure and arrival, function p identifies 

the moving objects and all objects hosted in the moving object (see the next 
subsection).  

Let MO be the set of mobile objects, i.e. objects whose class has the stereotype 
<<mobile>>. Similarly, let Loc be the set of locations, i.e. objects whose class has 
the stereotype <<location>>(see section 2). We define a partial function:  

lP : MO × E  Seq(Loc)  
lP(o, e) returns a sequence of locations, if oparticipates in event occurrence e. In 

the other case, the value is undefined. We call this sequence location path of object o 
(see below).  

In UML 2.0 [12], the semantics of an interactions is given in the term of traces. A 
trace is a sequence of event occurrences of the form <e

0
, e

1
,..., e

n
>. Two interactions 

are equivalent if their trace-sets are equal. Similarly, in our model, system behavior 
can be specified as a set of system runs. A partial run of model (E, , e

0
, lab, p, lP) is 

an not empty sequence of elements e
0
, e

1
,..., e

n
 such that the following conditions are 

satisfied:  

• If e
i 

 e
j
, then i  j.  

• If e  e
j
, then there exists an index i  j such that e

i
 = e.  

In other words, a partial run is a linearization, which preserves the temporal ordering; 
moreover for every event occurrence belonging to the run, all preceding event 

                                                           
1 One could split such an event into to a send event and a receive one. 
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occurrences belong to the run as well. Let us observe, that any not empty prefix of a 
partial run is a partial run.  

Partial runs define particular moments in system execution. For such moments we 
can determine system topology. Let e

0
,..., e

n 
be a partial run, we say that after this run 

object o2 is located in location o1 (inside o1, resp.) iff there exists an event 
occurrence e

i
 and an object o such that:  

• The location path lP(o, e
i
) has the form l

1
,..., l

n
, contains locations l

j
 = o1 and 

l
j+1 

= o2(contains locations l
j
 = o1 and l

k
 = o2, such that j < k, respectively).  

• For all event occurrences e
k
, such that i < k, and for all objects o  p(e

k
), the 

location path lP(o,e
k
) does not include o2.  

The location of an object is determined by the most recent information concerning its 
location. Similarly, we can define location path of an object after a run. The topology 
of a mobile system at a particular moment of time is derived from the information 
contained in the events occurring in the corresponding partial run; it is the sum of 
object locations.  

Models that are semantics of SDM diagrams have certain properties, which formal 
models in general may violate. We call such properties consistency conditions. For 
example the topology of a mobile system should not change during method call or 
return. The topology changes only in the case of object departure or arrival and 
constructor return. Moreover, departure and arrival change only the location (i.e. the 
atLoc attribute) of the moving object. Locations of all other objects remain 
unchanged. Constructor return doesn’t change locations of already existing objects. 
As mentioned in section 2, we assume that the locations form a forest. Consistency 
conditions can be used when proving or model-check-ing properties of SDM 
diagrams.  

3.2   Definition of the Partial Order Semantics  

In this section, we introduce a generic method for defining a partial order semantics 
for a concrete SDM diagram. This method includes three steps: identification of event 
occurrences, derivation of the partial ordering and labelling of the occurrences.  

We associate an element of the set E to every graphical artefact of the form: 
beginning and end of a message arrow (e.g. move message), a message arrow 
crossing an object box by going in or out as well as method and constructor 
termination indicated by a corresponding rectangle. Let us point out that if an arrow 
crosses an object box twice, then it does not interfere with the action box, such as for 
example a message arrow crossing a lifeline of an object in UML sequence diagram2.  

The definition below does not guarantee that we obtain a partial ordering. It yields 
only a quasi order, i.e. a reflexive and transitive relation. In fact, it depends on the 
SDM diagram being formalized, if we obtain a partial order or not. As in the case of 
general Sequence Diagrams, it is possible to draw diagrams with circular 
dependences. In such a case, the resulting quasi order is not a partial order.  

                                                           
2 For simplicity, we do not consider cases when a message arrow crosses object boxes of the 

same object several times. 
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For simplicity, we do not talk about the topological artefacts, but about the 
corresponding event occurences (see above). The temporal ordering of event 
occurrences  is defined as the smallest reflexive and transitive relation satisfying the 
following conditions:  

• If event occurrence e
1 
is located above event occurrence e

2 
on a rectangle being 

a border of the same action box, then e
1 

 e
2
.  

• If e
1
 and e

2
 are located on the same message arrow and e

1
 proceeds e

2
 in respect 

to the direction of the arrow, then e
1 

 e
2
.  

For every element of E we define the values of functions lab, p and lP. The 
function lab returns the type of an event: message send, message receive, method or 
constructor call, method or constructor start, method or constructor return, cross 
event; method call, object departure and object arrival.  

The function p identifies participants of a communication event e. If it is a send of 
a message, arrival of a message, method call, start of a method execution, method 
return, then p(e) includes only the sender, message receiver, caller, executing object, 
respectively. In the case of object departure and arrival, we assume that the event 
participants are the moving object and additionally all objects located directly or 
indirectly in the moving object; those objects can be identified by figuring out if the 
corresponding action boxes are located inside the action box of the moving object. 
The reason for including such object is that an object located in a moving object 
changes its location path when its host moves. The move is also a kind of caesura for 
the participating objects (see below).  

The auxiliary element e
0
 defines the initial topology of the system. p(e

0
) includes 

all objects which exist initially, i.e. objects whose object boxes start with a rectangle 
bearing a name of an object (see for example 131 on figure 4). If an event occurrence 
e corresponds to a message arrow crossing an action box of object o, then we assume 
that p(e) = {o}. If an event e corresponds to the moving of object o, then p(o) 
contains all objects with object boxes located in the object box of o before the move.  

For every event e and every object o taking part in this event (i.e. for every o  
p(e)), location path lP(e, o) is defined as the sequence of objects such that their object 
boxes contain the object box of o on which e is located; the objects are listed from the 
inner most to the outer most. If an object o' neither takes part in e nor occurs at a 
location path of an participating object, then the value of lP(e, o') is undefined. This is 
due to the fact that we do not want to restrain locations of objects not involved in an 
event. Concurrently executing objects may change locations independently. Let us 
observe that location paths are defined for all objects existing initially, since they 
belong to p(e

0
). Consequently, the initial topology is fully determined. Let us also 

observe that in the case of move, the locations of participating objects before and after 
the move are defined by the location paths corresponding to the departure and arrival 
event occurrences, respectively. In general the topology in different moments of time 
is determined by location paths. The location of an object is determined by the last 
relevant event.  
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3.3   Example 

In this subsection we show how to define the partial order semantics for a concrete 
SDM diagram. For simplicity, we assume that all objects occurring in the diagrams 
are mobile, i.e. the corresponding classes have the stereotype <<mobile>> (see 
section 2). Fig. 4 makes explicit the event occurrences from Fig. 2: e

1 
is a method call, 

e
1
' corresponds to crossing the boundary of 131. e

2
 is the start of the method 

execution, e
3
 is a constructor call, e

4
 is the termination of the method and e

5
 is the start 

of constructor execution.  

Fig. 4. Object copying and creation  

There set of event occurrences has the form E = {e
0
, e

1
, e

1
',..., e

5
}. e

0 
proceeds all 

other events. e
1
 proceeds e

1
' and e

1
' proceeds e

2
; this is due to the ordering of these 

occurrences on the corresponding message arrow. e
2
 proceeds e

3
 and e

3
 proceeds e

4
; 

this is due to the to down ordering of events on the object box of 742. Finally, e
3
 

proceeds e
5
. The labelling function lab returns call for e

1
, since it is of type call. It 

returns cross for e
1
', start for e

2
, call for e

3
, start for e

5
 and return for e

4
.  

Initially, there exist three objects: v, 131 and 742; therefore p(e
0
) = {v, 131, 

742}. The participants of occurrence e
1
 are: v, 131. Similarly, p(e

1
') = {131}, p(e

2
) = 

{742}, p(e
3
) = {742}, p(e

4
) = {742} and p(e

5
) = {v'}. The topology is defined by the 

function lP: lP(e
0
, v) = <131> and lP(e

0
, 131) = lP(e

0
, 742) = <>. The location of 

object v during occurrence e
1
 is 131, i.e. lP(v, e

1
) = <131>. lP(131, e

1
) is an empty 

list and lP(742, e
1
) is undefined (see below). 

 

Fig. 5. Complex move  

Fig. 5 shows communicating objects which change their locations. Object b 
moves from location a to location c. Objects b1, b2 communicate before and after 
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the move. The communication between objects c1 and c2 does not depend 
temporally on the move. The initial topology is defined as follows:  

p(e
0
) = {a, b, b1, b2, c, c1, c2},  

lP(b, e
0
) = <a>, lP(b1, e

0
) = lP(b2, e

0
) = <a, b>, lP(c1, e

0
) = lP(c2, e

0
) = <c>.  

Object b1 is the only participant of occurrence e
1
. When occurrence e

1
 takes 

place, the location of b1 is b and the location of b is a. Consequently the location 
path of b1 during e

1
 equals (b, a). There are three participants of the occurrence e

3
, 

i.e. p(e
3
) = {b, b1, b2}, and for participants of e

3
', i.e. p(e

3
') = {a, b, b1, b2}3, this 

corresponds to the assumption that objects located in a moving object participate in 
the move. Similarly, p(e

4
') = p(e

4
) = {c, b, b1, b2}. The move is a kind of caesura for 

the involved objects. It separates events before the move and events after the move.  
Let us observe, that we cannot infer from the diagram the temporal ordering of e

1
 

and e
7
. Similarly, we cannot infer from the diagram where object b is located when 

occurrence e
7
 happens; the location of object bduring occurrence e

7 
may be a or c or 

none of them. This explains why lP is a partial function.  
There are several partial runs of the system shown on Fig. 5. For example, e

0
, e

1
, 

e
2
, e

3
, e

3
', e

4
', e

4
,e

5
, e

6
, e

7
, e

8
 is a maximal partial run in the sense that it contains all 

event occurrences. Similarly, e
0
, e

7
, e

8
, e

1
, e

2
, e

3
, e

3
', e

4
', e

4
, e

5
, e

6
 is another maximal 

partial run. Of course, all prefixes of these runs are partial runs. Let us consider the 
first run, the initial topology is not changed after e

1
 nor after e

2
. After occurrence e

3
, 

object a does not contain any other object and object c contains objects c1 and c2 
only. The topology changes once more after occurrence e

4
: object c contains now 

additionally b1 and b2. 

3.4   Lifelines  

In this subsection, we formally define the notion of lifeline. We have introduced this 
notion in the paper [10] already. We have given some examples of its use there, but 
we were not able to define it precisely due to lack of proper terminology. Our 
semantics allows us to define the notion of lifeline in precise formal terms. This 
notion generalizes the notion of object lifeline as defined in UML Sequence Diagrams 
[12]. It generalizes also the idea of Use Case Maps [3]; this notation strictly separates 
mobile objects and locations. In SDM an object can be mobile, if its class has the 
stereotype <<mobile>>and at the same time it can play the role of location, if its 
class has the stereotype <<location>>.  

Let in UML 2.0 “The semantics of the lifeline (within an interaction) is the 
semantics of the interaction selecting only event occurrences of this Lifeline.” Our 
definition of object lifeline corresponds strictly to this definition: a lifeline of an 
 

                                                           
3 Let us notice, that there is difference between p(e

1
'), from figure 4 and p(e

3
') from figure 5. In 

the first case, the message causes an object creation, but the object does not exist when the 
message is sent. In the second case, the object move all together and therefore they are listed 
as event participants. 



222 P. Kosiuczenko 

 

object is the set of all events the object participates in. Formally: let (E, , e
0
, lab, p, 

lP) be a SDM semantics, and let o be one of the participating objects, the lifeline of 
the object o is the set  

{e  E | o  p(e)}  
The partial order relation on the set E orders the event occurrences belonging to a 
lifeline. So the temporal ordering of the lifeline is simply inherited from the superset E.  

Fig. 6. Lifeline  

As example let us consider the diagram in Fig. 6. The lifeline of object b1 has the 
form: {e

0
, e

1
, e

3
, e

3
', e

4
', e

4
, e

5
}. The lifeline of object b consists of occurrences: e

0
, e

3
, 

e
3
', e

4
' and e

4
.  

4   Abstraction Mechanisms  

One of the most important principles in science is the principle of abstraction. Ideally, 
there should be a notation of abstraction allowing one for displaying relevant and 
hiding irrelevant information. In the previous paper we have introduced a powerful 
graphical mechanism for hiding irrelevant information [10]. The zoom-out 
mechanism allows us to abstract from internal details of so selected objects, called 
boundary. In particular, it allows us to hide the objects located in boundary objects 
and their behaviour. Similarly, we have introduced the so-called zoom-in mechanism 
for displaying details of objects and their behaviour.  

In the first subsection we formalize the zoom-out mechanism. In the second 
subsection we explain how the formal machinery works using an example. In the third 
subsection we show how to formalize zoom-in to a move.  

4.1   Formalization of the Zoom-Out Mechanism  

In this subsection, we formalize the zoom-out mechanism. This mechanism allows us 
to abstract from the internal structure and behavior of selected objects, which we call 
boundary. We define which event occurrences are visible and which not. The zoom-
out mechanism can be applied to whole models, but it can be applied as well to 
selected time intervals. The definitions prove to be simple, thanks to the local 
definition of object’s locations.  
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Fig. 7. Boundary objects  

Fig. 7 shows the basic idea of boundary objects. The objects located in a selected 
object can be seen as a tree. The objects located in boundary objects are invisible, i.e. 
an object is invisible, if its location path contains a boundary object, in the other case 
it is visible. The objects located above boundary objects are visible. For example, let 
o1 and o2be two objects participating in an event occurrence; o1 is visible, but o2 
not. Similarly, we can define visible and invisible events.  

Formally, let BO be a set of boundary objects, and let e be an event occurrence, 
we say that e is not visible in respect to BO iff one of the following conditions is 
satisfied:  

• For all objects o
1 

 p(e), the location path of o
1
 contains a boundary object.  

• e is a send event, the initiating object (i.e. the caller, the departing object or the 
sender), respectively is a boundary object and the target object (i.e. the 
receiver, the target location or the receiver, respectively) is located within the 
caller.  

A event occurrence is visible if it is not invisible. In other words, an occurrence is not 
visible, if all objects participating in the occurrence are invisible or it is a send event, 
the initiating object is a boundary object and the target object is not visible. Partial 
runs correspond to points of execution. We say that an object is visible after a partial 
run, if this object is not located within a boundary object (see subsection 3.1).  

Let us observe, that in the case of formal models satisfying the consistency 
conditions, for every two partial runs ending with the same event occurrence e, the 
sets of visible objects participating in this event occurrence are the same. In other 
words, for every occurrence and every object participating in the occurrence the fact 
whether the object is visible or not, does not depend on run the event is part of. More 
generally, if two event occurrences concern the same object, then they are temporally 
related. This follows from the fact that event occurrences on the same object box are 
temporally related. If an object moves or if its host moves then the object is involved 
and the move is a kind of ceasura.  

We define an abstraction function F. This function has two arguments: a set of 
boundary objects and a model:  
F(BO, (E, , e

0
, lab, p, lP)) = (E', ', e

0
, lab', p', lP'), if the following conditions are 

satisfied:  

• E' = {e  E | e is visible in respect to BO}.  
• ' is the restriction of  to E'.  
• lab' is the restriction of lab to the set E'.  
• p'(e) = {o  p(e) | lP(o, e) does not include objects from BO}.  
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• lP'(o, e) is defined as lP(o, e), if e is a visible event occurrence and o  p'(e); 
lP' is undefined for other pairs of objects and occurrences.  

E' is the set of visible events. p' contains objects visible during occurrence of e. lP' is 
defined as lP for objects visible during event occurrence, for other objects it is 
undefined. Let us observe, that by definition, for all visible event occurrences e and 
all o  p'(e), lP'(o, e) does not contain boundary objects.  

We may perform abstraction several times; the result should not depend on the 
order we apply the zoom-out mechanism. The following statement says that this 
requirement is satisfied. It is due to associativity and commutativity of set theoretical 
union.  

Statement  
F(BO

1
, F(BO

2
, (E, , e

0
, lab, p, lP))) = F(BO

1 
 BO

2
, (E, , e

0
, lab, p, lP))  

The statement follows from the fact, that it does not matter whether we abstract 
from event occurrences invisible in respect to BO

1
 first and then from occurrences 

invisible in respect to BO
2
, or we abstract from occurrences invisible in respect to BO

1 

 BO
2
 in one step. Consequently, the resulting set of visible occurrences depends only 

on the union. The resulting partial order is just the restriction of the initial partial 
order. The resulting participation function and the function returning location paths 
depend only on the union BO

1 
 BO

2
.  

We may apply the zoom-out mechanism in a much finer way. It can be applied not 
only to whole lifelines of objects, but also to particular time intervals when the 
behaviour and internal structure of selected objects is unimportant.  

Let (E, , e
0
, lab, p, lP) be a partial order semantics of a mobile system and let N 

be a subset of E. We say that N is convex iff for every three occurrences e
1
, e

2
, e

3
, if 

e
1
, e

2 
 N and e

1 
 e

2 
 e

3
, then the element e

2
 belongs to N as well. The definitions 

above can be formulated for convex sets of occurrences N:  
An event occurrence is invisible relative to N iff it belongs to N and it is invisible 

in the above defined sense. We can redefine the functions lab, p, lP for event 
occurrences from N in an analogous way.  

4.2   Zoom-Out: Examples  

In the first example we show how to gradually abstract from the details of the 
interaction shown on Fig. 2. We present two views on the interaction. The left hand 
side of Fig. 8 shows the receiver view. The receiver of a virus usually cannot see the 
structure of the virus sender, but it may figure out who the sender of the virus was. A 
network observer can see only the communication over the network, but not the 
internal structure of the communication participants.  

In the case of the first diagram, 131 is the only boundary object, i.e. BO
1
 ={131}. 

e
1 
is the only invisible event, consequently M' = {e

0
, e

1
',..., e

5
}. There are initially two 

objects: 131 and 742; therefore, p'(e
0
) = {131, 742}. 131is the only participant of 

the occurrence e 
1
', i.e. p'(e

1
') = {131}. p'(e

2
) = {742}, and so on. The the function 

lP'(_, e
0
) is defined for objects 131 and 742.  
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Fig. 8. Abstracting from internal details  

In the network view, the set of boundary object is equal {131, 742}. There are 
only three event occurrences in this view: e

1
', e

2 
and e

4
. Only the visible objects 

participate in these events.  
The next example concerns partial zoom-out. We can abstract from internal 

structure and behavior of selected objects during certain time intervals. Fig. 9 
abstracts from the behaviour and internal structure of b after it moves.  

Fig. 9. Partial zoom-out  

Objects b1, b2 communicate before and after the move. The initial topology is 
defined as follows: p'(e

0
) = {a, b, b1, b2, c, c1, c2}, lP'(b, e

0
) = <a>, lP(b1, e

0
) = 

<a, b>, lP'(b2, e
0
) = <a, b> and so on. There are four participants of occurrence e

4
: 

p'(e
4
) = {c, b, b1, b2}. lP'(_, e

4
) is defined only for objects b and c. 

4.3   Zooming into Move  

In this subsection we formalize the zoom-in mechanism allowing us to display and to 
hide the details of object’s move. It is possible to zoom into the object’s move arrow 
to see the behavior of the participating objects. The top part of Fig. 10 shows the 
move of object bfrom location a to location c. All objects hosted by b participate in 
this move. In the top of the figure, the move is shown in the zoom-out view. The 
second diagram in Fig. 10 shows the move details, i.e. the zoom-in view. It displays 
the communication between b1 and b2during this move. The zoom-in version of the 
move arrow has only one black circle and one sharp end. We introduce this notation 
in order to make explicit that the communication happens between start of the move 
and the end of the move.  

The zoom-out view can be seen as an abstraction of the detailed view. In this case 
the convex set is the interval (e

3
, e

4
) = {e | e

3 
 e  e

4
}, and the boundary set contains 
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Fig. 10.  Zooming into a message 

the object b only. The set of event occurrences corresponding to the first class 
diagram has the form {e

0
, e

1
,..., e

6
}. The temporal order is linear: e

1 
 ...  e

6
. In the 

detailed view new occurrences are added and the temporal ordering is extended:  
e

0 
 e

1 
 e

1 
 e

3 
 e

3
'  i

1 
 i

2 
 i

4
, i

1 
 i

3 
 i

4 
 e

4
'  e

4 
 e

5 
 e

6
.  

Concluding Remarks  
The formal, partial order based semantics, presented in this paper explains the 
meaning of Sequence Diagrams for Mobility. It allows us also to formalize the 
abstraction mechanism introduced in the previous paper [10]. This semantics is well 
integrated with UML 2.0. Let us observe that it is possible to have a bit different 
semantics of SDM which assigns events only to send and receive actions (cf. [10]). 
For example, when an object located in another object sends a message, the message 
may cross the object box of the outer object; we may skip event occurrences 
corresponding to crossing of those boxes.  

In the future, we are going to use this semantics to implement tools for graphical 
modelling of mobile systems. We are also going to investigate to what extend the 
decidability results and algorithms concerning Message Sequence Charts (cf. [11]) 
apply to SDM.  
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Abstract. We have developed an approach for generating automatically an SDL 
specification from an MSC specification and a given target architecture.  The 
approach has been implemented in the MSC2SDL tool. In this paper, we give an 
overview of our approach and discuss several issues encountered during this 
research, before applying our approach to the Autonomous Shuttle Transport 
System and discussing this experience. 

1   Introduction  

MSC (Message Sequence Charts) [10, 11] and SDL (Specification and Description 
Language) [12] are two languages developed and maintained by the International 
Telecommunication Union (ITU-T). They are widely used within the 
telecommunication industry. MSC is used to express the behavioral requirements in 
terms of trace scenarios the system is required to exhibit.  SDL is mainly used during 
the design phase, where an SDL specification consists of the architecture of the 
system as well as the behaviors of the different components in the system. SDL 
specifications can range from very abstract to very concrete specifications. Several 
commercial tools, such as ObjectGeode [16] and Tau [18], are available nowadays to 
translate automatically an SDL design specification into a (C, C++ or Java) 
implementation.  

Our research goal was to bridge the gap between the requirement phase and the 
design phase. In this paper, we give an overview of our approach for automatic 
generation of SDL design specifications from behavioral scenarios specified with 
MSC. The architecture of the target design is given as an input parameter and taken 
into account during the translation.  The generated SDL design specification conforms 
to the MSC specification. In other words, it has the same traces as the MSC 
specification. Moreover, the generated SDL specification is free of deadlocks or 
distributed choices.  In this paper we will also discuss a few issues encountered during 
this research. The main contribution of this paper is an application of our approach to 
the Autonomous Shuttle Transport System (ASTS) described in [8].  

The remainder of this paper is structured as follows. Section 2 introduces briefly 
the MSC and SDL languages as well as the concepts of consistency between MSC 
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and SDL specifications.  In Section 3, we give an overview of our basic approach for 
translating an MSC specification into an SDL specification with a given architecture. 
In Section 4, we discuss the evolution of our approach and the main issues 
encountered during this research. The application to the ASTS case study is described 
in Section 5.  In Section 6, we discuss related work, before concluding in Section 7. 

2   MSC and SDL Languages 

2.1   Message Sequence Charts (MSC) 

The MSC language has two equivalent forms: one is graphical and the other one is 
textual. The graphical representation is widely used. The MSC'96 standard has 
introduced the high level MSCs (HMSC) where MSCs can be composed using a set 
of operators [10]. The MSC-2000 standard [11] includes time constraints and data. 

A basic MSC (bMSC) is composed of a set of concurrent process instances that 
exchange messages asynchronously in a pairwise manner. Each process instance is 
represented by an axis that is delimited by a start and end symbol or a termination 
symbol. A simple bMSC is shown in Fig. 1 where process P1 is sending message a 
then c to process P2, while process P3 is sending message b. In addition to message 
exchanges through sending and reception events, a bMSC may contain conditions, 
which describe the state of a subset of processes in the MSC, actions, timers and 
instance instantiation and termination as illustrated in the bMSC 
GET_ORDER_DELIVER of the case study in Fig. 11. Within each instance, events 
are totally ordered according to their positions from the start to the end symbols on 
the instance axis. All events are atomic and do not consume time.  

Inline expressions define events composition in bMSCs. The parallel, alternative 
composition, iteration, exception and optional regions represent the inline operators. 
A parallel inline expression defines a parallel behavior in a bMSC. No ordering is 
defined between events in different sections.  An alternative inline expression defines 
alternative behaviors in a bMSC as shown in Fig. 12. An iteration inline expression 
defines a repeated execution of a section in a bMSC. Events in the iteration area will 
be executed several times (0-inifinite). An exception inline expression defines 
exceptional behaviors in a bMSC.  

Timers may be defined within a bMSC to express timing constraints (timer 
expiration and time supervision). For each timer-setting event, a corresponding time-
out or/and timer reset has to be specified and has to follow it in order. However, 
corresponding timer events may be split among different bMSCs in cases where the 
whole scenario is obtained from the composition of several bMSCs (see HMSCs). 
Such as situation happens for instance in Fig. 9 and Fig. 10. 

Time constraints have been introduced in the MSC-2000 standard [11] to support 
the notion of quantified time for the description of real-time systems. Time constraints 
can be specified in order to define the time at which events may occur. The progress 
of time is represented explicitly in a quantified manner, i.e. the traces of events are 
enhanced with a special event, which represents the passage of time. Timing in MSC 
enhances the traces of an MSC with quantitative time values. The time progress (i.e. 
clocking) is equal for all instances in an MSC. Also, a global clock is assumed. Time 
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constraints can be absolute or relative. Absolute time constraint relates to an event 
and states a time interval or point at which the event is required to occur. A relative 
time represents a time distance between a pair of events. Furthermore, time can be 
measured and also be used as constraints for pairs of events.  MSC-2000 provides 
constructs for the definition of data and for variables manipulation. 

HMSCs give an overview of the system specification in terms of the composed 
MSCs, which could be bMSCs or HMSCs. HMSCs provide four operators to connect 
MSCs to describe sequential, alternative, iteration and parallel execution of MSCs. 
Global conditions in HMSCs represent global system states. 

Sequential HMSC operator defines the sequential execution of MSCs. The MSCs 
will be executed one after the other in the order specified by the HMSC and according 
to the weak sequential composition semantics. Alternative HMSC operator defines 
alternative executions of MSCs. Only one of the alternative MSCs will be executed 
for each execution trace. Iteration HMSC operator defines iterative execution of 
MSCs. Parallel HMSC operator defines the parallel execution of MSCs.  In Section 5 
(case study) , we model the ASTS with an HMSC that contains sequential 
composition, alternative MSCs and iterations as shown in Fig. 6. 

2.2   Specification and Description Language (SDL) 

SDL [12] also has two equivalent forms: a graphical and a textual form. As for the 
MSCs, the graphical representation is widely used. The architecture of an SDL 
specification is described as a system that is represented as a structure of blocks, 
which may be, decomposed recursively into sub-blocks, until the basic components, 
namely processes, are reached. Blocks are interconnected through channels for 
communications between blocks. Communication between processes is asynchronous. 
SDL allows for multiple channels between processes (blocks), in each direction. 
However, each SDL process has a single FIFO queue for arriving messages, 
regardless of the source. Messages sent to a process by different processes are merged 
into the process single input queue, in the order of their arrivals.  The SDL 
architecture for the ASTS is discussed in Section 5, where we can see the how the 
system is decomposed into blocks, which are also decomposed into processes. 

The behavior of an SDL system is defined by the parallel composition of the 
behaviors of the process instances in the system. The process behavior is described by 
a diagram, which is an extension of the Extended Finite State Machine model. A 
process is modeled as a set of states and transitions connecting the states. Each 
transition consists of a series of actions, such as local actions, procedure calls, timer 
set and reset, signal output, etc. An SDL process, in a given state, initiates a transition 
by consuming an expected signal from its input queue.  An input signal, which is not 
taken care of in a state (a signal, which does not initiate any transition) is implicitly 
consumed by the process. In this case, the signal is simply discarded and the process 
remains in the same state. In order to retain signals in the queue for later consumption, 
SDL provides a save construct. In a given state, signals mentioned in a save are 
neither removed from the queue nor consumed in that state. In other words, the save 
construct is used to change the order of signal consumption.   Simple SDL process 
behaviors are given in Fig. 3, where process P2, for instance, goes from its initial state 
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to state s1 where it can consume signal a and save signal b if it is ahead of a, and 
move into state s2. From state s2, P2 can consume signal b and move into state s3. In 
state s, if signal c is in front of signal b, it will be saved. From state s3, P2 consumes 
signal c and terminates. Other SDL constructs are shown later on with the case study. 

2.3   Consistency Between MSC and SDL Specifications 

In any software process, the requirement specification has to be validated against the 
user requirements. Our approach assumes that the MSC specification has been 
validated against the user requirement and is used as a reference for the subsequent 
phases.  

In this paper, we say that an SDL specification is behaviorally consistent with 
respect to an MSC if and only if the set of traces defined by the MSC is equal to the 
set of traces of the SDL specification. Our goal is to exactly capture and implement in 
SDL the behavior specified with the MSC. 

We also define the concept of architectural consistency between the MSC and the 
SDL architecture as follows: 

• all processes described in the MSC are present in the SDL architecture, and 
•  for each message m sent from an instance I to an instance J in the MSC, there is 

a channel ch in the SDL architecture that can convey m from process I to 
process J. 

The SDL architecture may consist of more processes and channels than what is 
required for the implementation of the MSC. 

3   From MSC to SDL 

In this section, we give an overview of our basic approach for handling bMSCs by 
focusing mainly on communications and message exchanges between processes. 
Messages in MSCs are explicitly specified, and the order of the sending/consumption 
events with respect to their instances is explicitly specified. However, MSCs do not 
specify the actual arrival order of the messages into the input queue of the destination 
processes. Rather, the order depends on the underlying architecture and the processes 
interleaving. On the other hand, SDL instances implicitly discard signals, which are in 
the front of their input queues, and are not expected at the current state. These 
discarded signals, which may be required in the next states, may lead to a deadlock. In 
Fig. 1 for instance, P2 has to consume specified messages in the following order: a, b 
then c. However, the actual arrival order of messages to P2 input queue might be 
different from the consumption order, depending on the target architecture and 
processes interleaving. For the target SDL architecture, Architecture 1, given in Fig. 
2, because messages a, b and c are conveyed through different channels, the possible 
message interleaving for P2 are: a, b then c; or  a, c then b; or b, a then c. 

A straightforward translation of the processes P1, P2 and P3 into SDL will lead to 
a process P2 that consumes signal a first, then b and finally c without paying any 
attention to the arrival order of these signals into the input queue. For this SDL 
specification, there is no problem with the first order since signals a, b and c, arrive 
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according to the consumption order. However, the other two arrival orders will 
certainly lead to deadlocks. In the second order (a, c then b), after P2 consumes signal 
a, signal c is discarded since I2 is expecting signal b not c. Consequently, P2 will 
never reach completion. For the last case, (b, a then c), signal b is discarded since P2 
is expecting to consume a. After consuming a, signal c is discarded and P2 will wait 
for the previously discarded signal b. More deadlock scenarios can arise, if the SDL 
architecture allows signals a and c to travel through different paths as in  Architecture 
2 in Fig. 2. 

In order to prevent deadlocks in the SDL specifications, our approach adds an SDL 
save construct for each signal that may arrive in the input queue earlier than expected. 
The need for a save construct can be determined by checking the order relation of 
each specified input event against the order of all successive input events for the same 
instance. The order relation between each pair of events, according to the MSC 
standard [10, 11], can be determined with the following rules and the transitive 
closure: 

• events are totally ordered for each instance axis, and 
• the output event of a message precedes the corresponding input event. 

In [17, 13, 1] we have introduced an approach and the MSC2SDL tool for 
generating an SDL specification from an MSC and a target SDL architecture of the 
system. The automatically generated behaviors for the processes depend on the 
architecture of the system, i.e. the communication channels between the processes in 
the architecture. 

As input the MSC2SDL tool takes an MSC specification as shown in Fig. 1 for 
instance and an SDL architecture, Architecture 1 or Architecture 2 for instance, as 
shown in Fig. 2. The MSC2SDL tool checks for the architectural consistency between 
the MSC specification and the SDL architecture, i.e. for each MSC process there is a 
corresponding SDL process and there is a channel to convey each message between 
the communicating processes in the MSC.  

P1

msc msc2sdl

a

b

c

P2 P3

e1

e2

e3

e4

e5

e6

 

Fig. 1. A bMSC Example 
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Fig. 2. SDL Architectures 

After checking the architectural consistency between the given bMSC and the SDL 
architecture, the algorithm builds an Event Order Table, which captures the order 
relation between the events of the bMSC according to the two basic rules 
aforementioned and the transitive closure. In this table an entry (ei, ej) is set to T 
(True) if and only if ei precedes ej.  The Event Order Table for the MSC in Fig. 1 is 
shown in Table 1. 

Table 1. Event Order Table for MSC in Fig. 1 

 e1 e2 e3 e4 e5 e6 

e1  T T T T  

e2     T  

e3    T T  

e4     T  

e5       

e6    T T  

The Event Order Table for an MSC is independent from the target architecture. In 
a second step, the algorithm builds Occupancy Tables. An Occupancy Table 
maintains the order relations between input signals of the corresponding SDL process. 
The number of tables is equal to the number of MSC processes that have input events. 
The rows of each table represent only the input events of the corresponding MSC 
process. The columns of each table represent the incoming routes that convey signals 
from other processes. The table is filled with all input signals that may exist in the 
input queue when the process is ready to execute the row event. This is done using the 
Event Order Table and following a simple rule: for a reception event e, a signal s 
might be in the queue, if and only if the reception of s does not precede e and e does 
not precede the sending of s. The Occupancy Table for MSC in Fig. 1 with 
Architecture 1 in Fig. 2 is shown in Table 2, while for Architecture 2 it is shown in 
Table 3. As we can see it from these two tables, for Architecture 1 c will always 
arrive after a, while for Architecture 2 c may arrive before a. 
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Table 2. Occupancy Table for MSC in Fig. 1 and Architecture 1 in Fig. 2 

input events 
for P2 

input 
message 

Route 
Ch1 

Route 
Ch2 

e3 a a, c b 

e4 b c b 

e5 c c  

Table 3. Occupancy Table for MSC in Fig. 1 and Architecture 2 in Fig. 1 

input events 
for P2 

input 
message 

Route 
Ch1 

Route 
Ch2 

Route 
Ch3 

e3 a a b c 

e4 b  b c 

e5 c   c 

After building the Occupancy Tables, the last step in the algorithm consists of 
generating the SDL processes. For each MSC process, the tool automatically 
generates the corresponding SDL process. Each MSC process is handled separately 
and MSC constructs are translated into SDL constructs on a one-to-one basis without 
any intermediary representation.  Several MSC constructs such as actions and timer 
events are translated in a straightforward manner into equivalent SDL constructs. An 
SDL process progresses from a state to another state by consuming an input signal. 
The approach inserts a new SDL state before each MSC input event. The approach 
adds an SDL save construct for each message in the corresponding Occupancy Table 
row, except for messages that are sent by the same instance and travel on the same 
channel as the input message. 

In the case of the MSC given in Fig. 1 and for each of the Architecture given in Fig. 
2, the tool generates the SDL processes shown in Fig. 3. The only difference between 
the SDL specifications for Architecture 1 and for Architecture 2 is in process P2, where 
we can see the usage of the SDL save construct to prevent the implicit consumption of 
messages that may arrive earlier than expected because of the architecture. 

4   MSC2SDL Evolution and Issues 

In order to handle HMSCs, we build an Event Order Table for each referenced MSC, 
and then generate a global Event Order Table by combining them properly according 
to the order relations between the referenced MSCs and weak sequential composition 
semantics. The order relation between any two HMSC nodes can be determined by 
finding a path from one to the other. If a path from node A to node B can be found, 
then node A precedes node B. The events in different referenced bMSCs respect the 
weak sequencing order. Then, a global Event Order Table is obtained by combining 
individual tables with the events respecting the weak sequencing order.  
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For handling time constraints, the Event Order Table has been enhanced to record 
not only the orders between events, but also their absolute time constraints and 
relative constraints. During the generation of SDL process behaviors, an absolute time 
constraint for a sending event is translated into a continuous SDL signal with the 
appropriate parameters and usage of SDL global clock now, while for a reception 
event it is translated into a (time) conditional input.  Relative time constraints are 
handled in a similar manner. We have also extended the approach to handle the data 
part and variables.  

a to P2

process P1

c to P2

DCL p2 P1D

b to P2

process P3

DCL p2 P1D

s1

b

Process P2

s2

a b

c

s3

c

s1

b

Process P2

s2

a b

c

s3

c

c

Architecture 1 Architecture 2  

Fig. 3. Generated SDL processes 

While working on the translation we have came across several issues, such as non-
local choice, non-implementability of a given MSC in a given SDL architecture. The 
second problem is more general than the first one. In this case, for a given MSC and 
given SDL architecture, there is no SDL specification with such architecture and 
which exhibits exactly the behavior described by the MSC. The problem of 
implementability, also referred to as realizability in [2], comes from the inline 
expressions, especially the alternative. For instance, the MSC given in Fig. 4 cannot 
be implemented in the SDL architecture given in the same figure. We cannot find an 
SDL specification with this architecture and where process Receiver will always 
know which alternative has been taken by process Sender. The reason for that is 
messages a and b are conveyed through two different channels and they can arrive in 
any order and the process Receiver cannot guess which alternative has been taken. 
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The problem of implementability comes from the fact that the MSC specification 
says one alternative and only one can be taken, but when the behavior is distributed 
into processes according to the architecture, there is no way for some of the processes 
to find out which alternative has been taken. In [2], Alur et al. refer to this as the 
problem of implied scenarios. In our case, we call it non-implementability in a given 
architecture, because we cannot find a trace equivalent SDL specification with the 
given target architecture. In our approach, we check for implementability by verifying 
that every alternative in the MSC is controlled by one and only one instance and the 
architecture allows for every instance to distinguish which alternative has been taken.  
Our current MSC2SDL tool checks for the implementability of bMSC with inline 
expressions, but does not handle yet the full HMSC.  

a

b

msc NI

c

alt

b

a

d

system NI

block B1 block B2

Sender Receiver

[c, d]

[a] [a]

[b]

[a]

Sender Receiver

a

b

msc NI

c

alt

b

a

d

system NI

block B1 block B2

Sender Receiver

[c, d]

[a] [a]

[b]

[a]

Sender ReceiverSender Receiver

 

Fig. 4. Example of non-implementability 

Timed MSCs may be non-implementable because of the aforementioned reasons 
and moreover because of the specified time constraints. For instance, it is not possible 
to implement the timed MSC given in Fig. 5 in a distributed architecture. This MSC 
states that either event e1 or e2 can be performed first, but the second one should be 
performed between 1 and 3 units of time later. This constraint cannot be enforced in a 
distributed architecture. Such a situation can be detected easily with a scanning of the 
Enhanced Event Order Table in the case of bMSCs. In the case of HMSCs, we are 
still investigating the set of HMSCs we can handle properly. 

Timed MSCs have also brought some other challenges. Time constraints specify 
temporal orders between events. These orders have to be consistent with the causal 
orders between events. However, this is not always the case. A timed MSC may be 
inconsistent, because an absolute time constraint violates relative time constraints for 
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e3

e1

process P1

msc example

m1

m2

I1 I2

process P2

(1,3)

e4
e2

 

Fig. 5. Non-implementable timed MSC  

instance. Our approach checks for time consistency of MSCs as discussed in [21].  
While the time consistency of a bMSC can be checked in a polynomial time when 
relative time constraints between causally independent events are not allowed. The 
case of HMSC is more complex. In this case, the algorithm for checking time 
consistency is exponential, even when we do not allow for relative time constraints 
between events in different MSCs in the HMSC. In [21], we have characterized a 
subset of HMSC we can handle more efficiently. 

The current version of MSC2SDL tool used for this case study handles all the 
constructs of MSC-2000, except the parallel operator, instance creation, multiple 
instances of the same process type, and from an HMSC we can only refer to bMSCs.  
We also have the abovementioned limitations for timed MSCs. 

5   Case Study: Autonomous Shuttle Transport System 

The Autonomous Shuttle Transport System (ASTS) [8] is a transportation system where 
shuttles transport goods between stations. Orders are announced by the broker and 
offers are made by shuttles. Once a shuttle has obtained an order, it delivers the order 
from the source station to the destination. Upon completion of delivery, a shuttle may 
get paid or will have to pay a penalty if the delivery deadline has not been respected. All 
the figures referred to in this section are given in the appendix of the paper. 

5.1   MSC Specification of the ASTS 
The MSC specification of the ASTS is given by the MSCs from Fig. 6 to Fig. 12. The 
system consists of seven actors.  In our modeling we focused on the communication 
between the broker and one shuttle only. In other words, we only model one shuttle. 
The HMSC in Fig. 6 gives an overall view of the system specification. After 
initialization, BrokerAgent generates and announces orders to Shuttle as shown in  
Fig. 8. Shuttle then decides to bid for an order (see bMSC MAKE_OFFER in Fig. 9) 
or not (see bMSC NO_OFFER in Fig. 10.). In the later case, Shuttle does not do 
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anything, i.e. does not respond to the announce made by BrokerAgent. In the case 
where Shuttle has made an offer, BrokerAgent may not select this offer from Shuttle 
(see bMSC NO_ORDER in Fig. 10), or grant this order to Shuttle. In this later case, 
Shuttle must deliver and report to BrokerAgent (see bMSC GET_ORDER_DELIVER 
in Fig. 11 and Fig. 12). Toward the end of this bMSC, we can see the interactions 
between Bank, Shuttle, BrokerAgent. If the delivery deadline has passed, Shuttle will 
pay a penalty. Otherwise, Shuttle gets paid for completing the order on time. 

As the reader can see, in the bMSCs of  Fig. 8 to Fig. 11, we have used timers. 
Timer TBA is used by BrokerAgent to guard against waiting forever for an offer from 
Shuttle, while timer TS is used by Shuttle to guard against waiting forever for an 
assignment from BrokerAgent.  

Our current MSC2SDL tool does handle the HMSC parallel operator. So, in order 
to allow for concurrent behaviours for Shuttle, such as getting order announcements 
and making offers, and delivering goods, we have decomposed it into two processes, 
Shuttle and ShuttleExt. Shuttle bids and takes orders only, while ShuttleExt delivers 
goods. For the same reasons, we have also decomposed BrokerAgent into 
BrokerAgent and BrokerAgentExt. BrokerAgent generates, announces and assigns 
them, while BrokerAgentExt monitors the delivery of each order. With this, Shuttle 
may take more than one order at a time and the orders are delivered sequentially.  
When delivering an order, ShuttleExt contacts TopologyAgent to get the latest 
connection map of the railway. ShuttleExt also requires process Simulator to enable 
its moving, loading and unloading.  

As we can see in the HMSC of Fig. 6, the repeated behavior is straightforward in the 
case of unsuccessful negotiations between  Shuttle and BrokerAgent  (i.e. NO_OFFER 
or NO_ORDER). The system loops back to the ANNOUNCE_ORDER bMSC.  In the 
case of a successful negotiation, the iteration is achieved with MSC setting conditions. 
Each actor goes back to its initial state by using MSC conditions after one round of 
operation is completed.  Notice that Shuttle and BrokerAgent can start negotiation of the 
next order before the completion of the current order by ShuttleExt. 

In our modeling, we have made the assumption that the delivery deadline of each 
order is the absolute time of 10 times the order ID x. The order ID x is incremented by 
1 for each new order. The completion time of each order is measured and compared 
with its deadline. The result is used to decide whether the shuttle should be paid for 
on time delivery or pay a penalty for late delivery.  

5.2   An SDL Architecture for the ASTS 

As discussed in the previous section the ASTS modeling in MSC is structured into 
seven processes. For the design of the SDL architecture, we propose to group these 
processes into four (logical) blocks as shown in Fig. 13 to Fig. 17. Block Shuttle_blk 
contains process Shuttle and ShuttleExt. Similarly, BrokerAgent and BrokerAgentExt 
are in the same block Broker_blk. Process Bank is in block Bank_blk. As for the other 
two components of the system, processes TopologyAgent and Simulator are grouped 
into the same block for the reason of simplicity. Processes communicate with each 
other through channels. There is one bi-directional channel between each pair of 
blocks where processes need to communicate with each other. 
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5.3   Generated SDL Process Behaviors 

The generated SDL process behaviors are shown in Fig. 18 to Fig. 26. All SDL 
processes repeat their behavior indefinitely. This repeated behavior is modeled using 
SDL states. In the case of MSC, the repeated behavior is modeled using setting 
conditions. Our MSC2SDL approach/tool translates MSC setting conditions into SDL 
states. For example, process Bank has such a repeated behavior, when it goes from 
state idle and back to idle. Loops in HMSC are also implemented with SDL states. 
The approach keeps track of the initial states of each bMSC, it is able to direct the 
process behavior using the state names.  An example of that is when the Shuttle does 
not make an offer; it loops back to its initial state listening.  

As mentioned earlier for the MSC specification, there are timers in processes 
Shuttle and BrokerAgent. They are set for each of the two processes to wait for the 
interaction from the other one for a certain period of time. Therefore in both process 
behaviors, there are two branches for timeout and reset timer. Actually, these two 
timers and the decisions made by Shuttle and BrokerAgent (different input signals) 
control the alternative behaviors. 

There are loop and alt inline expressions in bMSC GET_ORDER_DELIVER of 
Fig. 11 and Fig. 12, our MSC2SDL tool handles them properly. The controlling 
process for the alt is BrokerAgentExt, which makes the decision with a Boolean 
expression on the absolute time measurement result. Other participating processes 
follow the choice by consuming incoming signals. The MSC2SDL tool has a general 
SDL design for loop inline expressions in MSC, which has a four branches in the SDL 
behavior and controlled by a loop counter, loop lower bound, upper bound and guarding 
condition of the loop inline expression. This behavior can be found in the SDL behavior 
for process ShuttleExt, where guarding condition does not exist, and Boolean value 
“true” represents this situation. When the loop boundaries are the default values, our 
MSC2SDL tool uses 0 as the lower bound and 65536 as the upper bound.  

One interesting point in the HMSC specification is that at each alternative point, 
only process Shuttle and BrokerAgent participate in the choice. If one assumes that all 
processes in one system appear in all referenced bMSCs by default, then a non-local 
choice would appear for processes other than Shuttle and BrokerAgent. However, 
since process Bank, TopologyAgent, ShuttleExt, BrokerAgentExt, and Simulator only 
appear in bMSC GET_ORDER_DELIVER in Fig. 11 and Fig. 12, which is in one 
branch of the HMSC and only appear at the bottom of the specification, the behaviors 
for these processes remain local, which actually does not lead to any non-local choice.  

Notice that there is only very few usages of the SDL save construct in the 
generated processes. This is mainly due to the SDL architecture we have chosen for 
the system, “mono-channel”, i.e. at most one channel between each pair of 
communicating processes. 

6   Related Work 

Several research groups have been working on the translation of MSCs into other 
notations, more suitable for design specification, simulation and verification.  



240 F. Khendek and X.J. Zhang 

 

In [19, 20], Somé and Dssouli have considered the translation of timed scenarios to 
timed automata and check automatically the compatibility of the scenarios. However, 
the architecture of the system under consideration is not taken into account and the 
approach generates only the global automaton of the system. 

In [14], Leue et al. have considered the translation of MSC specifications into 
ROOM specifications.  Similarly in [15], Mansurov et al. have considered the 
generation of SDL specifications from MSCs. In these approaches, the architecture of 
the system is generated automatically and not taken as a parameter of the synthesis 
algorithm. We believe that the architecture of the system is an important and a 
creative parameter of the design that has to be provided by the user. Also, the issue of 
implementability of MSCs has not been considered.  In other words, for a given MSC, 
the existence or not of a behaviorally consistent specification in SDL or ROOM is not 
considered during the translation. In [15], the generated SDL specification may have 
more behaviors than the MSC specification, which is not the case of our approach.   

In [3], Alur et al. have investigated race conditions in MSCs, and discussed visual 
orders vs. “actual” orders. Our synthesis approach does a similar analysis according to 
a given SDL architecture. In [2], Alur et al. have also investigated the problem of 
synthesis and realizability of MSCs. This work focuses on the concept of implied 
scenarios, i.e. scenarios which are not specified in the MSC but which are possible in 
a distributed implementation with finite state machines. It handles only bMSCs with 
the alternative inline operator, but without time constraints. As discussed earlier in 
Section 4, implied scenarios happen when two instances or more can take different 
(alternatives) scenarios, and therefore ending with a scenario not allowed in the 
original MSC specification.  The implied scenario is a combination of two allowed 
scenarios. Our approach is able to detect such situations in the case of bMSCs with 
inline expressions. In this case, we stop and inform the user that the given MSC 
cannot be implemented in the given architecture. We point out the alternative 
construct and/or the architecture as the problem for the implementation.  

In [7], Hélouët and Jard investigated the necessary conditions for the synthesis of 
communicating automata from HMSCs under some specific communication 
assumptions.  As for SDL, every communicating automaton has an associated input 
queue. However, this queue does not follow any specific policy for the consumption 
of messages. An automaton can consume any message present in its input queue when 
needed.  On the other hand, automata are not allowed implicit transitions contrarily to 
SDL processes. These assumptions simplified the problem of implementability and 
render these results unusable in our framework. 

In [6], Engels et al. have considered the implementability of bMSCs in given 
communication models, which can be seen as SDL architectures.  The results in [6] 
are not applicable for HMSCs as shown in [13] or timed MSCs. In [5], the authors 
have designed an approach and a tool for the validation of MSCs against some errors, 
such as deadlocks, and distributed choices, etc., but this approach does not discuss the 
more general problem of implementability.  

More related and recent work and discussions can be found in [4] and [9].  In [4] 
for instance, the authors have categorized the construction approaches into two 
groups: analytic vs. synthetic. They have assessed the approaches with respect to a 
certain number of criteria, such as source scenario notation, target construction model, 
automatic vs. interactive, etc. 



From MSC to SDL: Overview and an Application 241 

 

7   Conclusion 

In this paper we have described our approach for translating MSC specifications into 
SDL specifications with a given architecture. Our approach bridges the gap between 
behavioral requirements and design specification. It ensures, by construction, behavior 
consistency between the SDL specification and the MSC specification, and no further 
validation of the SDL specification against the MSC specification is required. 

We have seen some of the thorny issues we are dealing with in our approach. 
Several of them are very hard and complex problems in the case of full HMSC. We 
have applied our approach to a simplified version of the ASTS.  The generated SDL 
specification of the ASTS has been simulated with commercial tools.  

We have spent some time on the modeling of the ASTS with MSC, which was not 
an obvious task.  We wanted to avoid the usage of parallel composition operator of 
MSC, which is not handled by our tool. The HMSC roadmap of the ASTS looks 
intuitive but because of the concurrent behaviors the shuttle has to exhibit, we have to 
look inside the bMSC GET_ORDER_DELIVER and achieve some of the repeated 
behavior using MSC setting conditions.   Also, the fact that the current MSC2SDL 
tool does not allow for referencing other HMSCs from an HMSC in a recursive 
manner has led to larger bMSCs,  like bMSC GET_ORDER_DELIVER.  

We have tried other MSC specifications of the ASTS, but some of them have led to 
the non-implementability problem. From this case study and several other ones, we 
found out that it is very easy to run into the non-implementability problem with MSCs. 
MSCs provide a global view of the system. One can very quickly write an MSC 
specification, which captures the global behavior of the system with several alternatives 
controlled by different processes for instance. At the MSC level, such alternatives do 
not cause any problem, because only one of them can be taken anyways according to the 
MSC semantics. However, these behaviors have to be distributed over different 
processes and the global meaning is lost and every process has only a local behavior, 
which may lead to implied (or inferred) scenarios.  One of the constraints of our 
approach is therefore to design the right MSC specification, which can avoid all the 
aforementioned problems. In other words, more effort has to be devoted to the design of 
the MSC in order to take advantage of the automatic SDL code generation.  

For this case study, we have considered only a “mono-channel” SDL architecture for 
the ASTS, i.e. at most one channel between each pair of communicating processes, which 
has also made the translation simpler and the generated SDL processes more intuitive.  
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Appendix:  The ASTS Case Study 
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Fig. 12. bMSC GET_ORDER_DELIVER Con’t 
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Fig. 13. ASTS Architecture 
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Fig. 18. Process Bank 
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Fig. 22. Process Shuttle 
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Fig. 24. Process ShuttleExt Con’t 
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Fig. 25. Process ShuttleExt Con’t 
 
 

 

Fig. 26. Process TopologyAgent 



Component Synthesis from Service Specifications
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Abstract. Correct component models for distributed, reactive systems
are difficult to construct. Typically, the services provided by such sys-
tems emerge from the interaction and collaboration of multiple com-
ponents; each component, in general, contributes to multiple services.
Consequently, services and their defining interaction patterns are key
elements in the development process for distributed system: they con-
tain the cross-cutting aspects of collaboration, which are only poorly
captured on the component level. Typical modeling and development
methods and associated notations, such as the UML, however, focus on
the specification of complete information about components, instead of
on the partial view provided by services. In this contribution, we give a
precise definition of the term service, based on patterns of interaction.
Using the CTAS case study, we demonstrate systematic development
steps leading from service specifications to component implementations;
we also show how to automatically synthesize prototypic state machines
from interaction patterns defining services.

1 Introduction

Distributed, reactive systems consisting of concurrently operating and communi-
cating components are notoriously difficult to develop. Increasingly, such systems
are composed from individual services. Driven by the success of technologies such
as “web services” (i.e. functions that can be accessed over the Internet) [31] in the
business domain, the notion of service is also becoming more and more prominent
in the embedded systems domain. Efforts such as AutoSAR [20], and AMI-C [21]
base entire automotive software architectures on the notion of service to reduce
the development and code complexity of next-generation vehicles [22].

Given the strong interest in the notion of service across application domains,
important questions from a software engineering perspective are: What are ser-
vices? How do the notions of service and component relate? What does a service-
oriented development process look like? How to transit from service specifications
systematically to component specifications?

In the remainder of this text we address these questions by (1) providing a
precise definition of services, based on interaction patterns among concurrent
components, (2) providing a specification language for services, (3) showing, in
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the context of the CTAS case study[7], how this service notion gives rise to a
service-oriented development process leading from interaction pattern specifi-
cations to service-oriented software architectures, and (4) showing how correct
component specifications can be synthesized (semi-)automatically from a service
specification.

The treatment of services as presented here is based on the corresponding
presentation prepared for the Dagstuhl Seminar No. 0337 “Scenarios: Models,
Transformations, and Tools”, and influenced by the fruitful discussions at the
seminar, as well as by subsequent further investigations into the topic, docu-
mented in [16, 14, 15]. Novel in this text is a presentation of the entire CTAS
case study using the service-oriented development approach.

1.1 Services, Roles and Components

Services (sometimes also called features) are one of the cornerstones of applica-
tions in the telecommunications domain; see [27] and the references therein for
an overview. Similarly, services play an important role in both established and
evolving technologies and implementation infrastructures such as CORBA [26],
Jini [25], .NET[24], and JXTA[23]. However, the definitions found in these ref-
erences are shallow in the sense that they typically consist only of the syntactic
signature of the function that implements the service. While this may be enough
to know about a service on the implementation level, this is certainly insufficient
for a systematic service-based development process. If we aim at using services
for the development of high quality, highly dependable systems, we better asso-
ciate the service definition also with semantic content. Only then can we make
precise statements about the composition of services to yield new services, about
refinement, and correctness of implementations.

We work with the following intuition for defining a precise service notion:
in “real” systems, implementation components are involved in the execution
of multiple services. Consider, as an example, a typical web client application,
providing facilities for (a) browsing web pages, (b) downloading files via FTP,
and (c) streaming of music and other media. While from the outside this web
client may appear to be one monolithic application, we may as well think of it
as the composition of three largely separate services (a), (b), and (c). In fact, in
building service (c) we may need little or no knowledge about service (a).

This example is illustrative also in another regard. The services (a) through
(c) emerge from the collaboration of the web client with multiple other compo-
nents, which are distributed over the Internet; they also make use of other local
services, say, provided by the underlying operating system. To a large extent,
therefore, these services are determined by the interactions required for their
implementation.

In this sense, we can understand services as a partial view on sets of inter-
acting components. Combining the various services a component is involved in
we obtain a complete behavior specification for that component. Therefore, we
use interaction patterns among distributed components as the defining element
for our service notion. We will formalize this concept in Sec. 3. Note, however,
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that the “traditional” notion of a “call/return” relationship between a service
user and a service provider emerges as special case of this definition.

Another observation concerns the level of abstraction on which a service can
be specified. Ideally, a given service should be implementable on a wide variety of
target implementation architectures, as long as the implementation guarantees
the correct execution of the interaction pattern defining the service. Therefore,
we decouple the specification of the interaction pattern from the notion of im-
plementation components. To that end, we introduce the notion of a role, which
describes the contribution of any component that plays this role to a given in-
teraction pattern. As an example for this decoupling, consider peer-to-peer net-
working systems; here, each node in the network is capable of playing both the
client and the server role. These roles, and interaction protocols among them,
can be specified separately from any concrete deployment on target components.

Together, the use of interaction patterns for defining services, and the ab-
straction introduced by roles leads to a powerful approach to service-oriented
software development as we will demonstrate in the remainder of this text.

1.2 Towards a Service Oriented Software Development Process

The complementary nature of services as interaction and collaboration specifi-
cations raises interesting questions regarding the methodological handling and
positioning of services within the overall development process for distributed and
reactive systems. Services can be thought of as cross-cutting interaction aspects
throughout the development process.

As a consequence of the partiality of the service definition, service develop-
ment is necessarily a highly iterative process. The whole idea of service-oriented
development rests on the premise that when developing one service we may not
necessarily have available complete information about all other services that
might also exist in the system. The mapping from a service specification to a
set of components implementing the services is a design step: it is quite likely
that a certain set of services needs to be implemented on a wide variety of target
architectures.

The key questions from a developer’s point of view are: how to identify ser-
vices in the first place, how to identify a potential target architecture, and how
to map sets of services to a given component architecture? To address these
questions we propose the development process [14] outlined in Fig. 1.

This iterative process mainly involves two phases: (1) Define the set of ser-
vices of interest; (2) Map the services to component configurations to define
deployments of the architecture. Phase (1) starts by identifying the relevant use
cases and their relationships in the form of a use case graph. From these use
cases the roles and their interactions are derived as defining elements of services.
This gives rise to a domain model for the roles involved. In phase (2) the role
domain model is refined into a component configuration, onto which the set of
services is mapped to yield an architectural configuration.

In Sec. 2 we apply this process to the CTAS case study; for further details
on the process we refer the reader to [14, 15].
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Fig. 1. Service-Oriented Development

1.3 Challenges, Contributions, and Outline

Traditional software development approaches and corresponding notations treat
components, not services, as first-class modeling entities; consequently, these
processes and notations focus mainly on complete behavior specifications, and
provide little or no means for composing components from partial, let alone
overlapping, behavior specifications.

In the service-oriented development approach we advocate here, we overcome
this limitation by introducing services as first-class modeling entities; a central
element of a service specification is the interaction pattern defining service be-
havior.

The remainder of this text is structured as follows. In Sec. 2 we explain
the service-oriented software development process outlined above in more detail.
To that end, we model a large part of the CTAS case study using our service
notion. In Sec. 3 we provide a precise model for defining the semantics of service
specifications. This model is the basis for discussing the synthesis from service
specifications to state machines defining complete component behavior in Sec. 4.
Sec. 5 contains our conclusions, related work, and an outlook.

2 CTAS Services: A Case Study in Service-Oriented
Development

To further motivate and explore the service-oriented development process out-
lined in Sec. 1, as well as the notation we use for service specifications, we have
modeled a significant subset of the Center Tracon Automation System (CTAS
[28]) starting from a purely textual requirements document[7]. This case study is
particularly appealing for our purposes for two reasons. First, the requirements
are provided on a very detailed level, including interaction properties of the
relevant components. Second, the document lacks a specification of the overall
collaboration of the individual components; thus, the “big picture” is missing
from the requirements specification.

The CTAS system requirements[7] identify the following types of components
in the system. There is a Communications Manager (CM) and two types of
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clients that communicate with the CM - Weather Aware Clients (WAC) and
Weather Unaware Clients (WUC). CTAS is responsible for two main processes:
initialization of a WAC and distribution of weather updates to all the WACs. The
initialization of a WAC is triggered when a WAC attempts to connect to CM,
or tries to re-initialize itself. The weather updates occur when the CM detects
that there is new weather information available for distribution to the clients.
For this example we will be considering only the interactions of the CM and the
Weather Aware Clients related to these two processes.

The CTAS components communicate by means of message exchange. Some
of these messages contain parameter flags to indicate success or failure of an op-
eration. Various constants used in the system, such as weather sources, weather
modes, weather cycle status, weather cycle client status are also defined in the re-
quirements documentation. Process requirements are explained in terms of how
a component reacts when it is in a certain state, and receives a message from
another component.

In this section, we describe the CTAS system using an architecture definition
language (ADL) we have defined for service oriented software architectures [14].
This ADL defines the system under consideration in terms of services supported
by the system. The services are defined as a set of interactions between the
different roles identified in the system to accomplish a specific objective.

For reasons of brevity, we will introduce only the elements of the ADL needed
for the specification of client initialization and weather update distribution. For
a more detailed presentation of the elements of the ADL, including the mapping
from roles and services to component architectures, we refer the reader to [14].

2.1 Use Cases

The first step in our service-oriented development process is to elicit the key use
cases of the system under consideration. This provides “high-level” insight into
the services the system needs to support.

In our example, we can identify use cases based on the features supported by
CTAS. A client component may need to connect to the CM, or inform the CM
that it needs to restart itself. In both cases, if CM is not busy, it will proceed to
initialize the client. Furthermore, when the CM is not busy, it will continue to
check for new weather updates to be distributed to the WACs; if there are new
updates, they will be delivered. The use cases identified for the CTAS system
are shown in terms of a graph in Fig. 2 (using UML notation for use cases).

2.2 Roles

The CTAS system requirements define the interactions between the different
components of the system – clients (such as processes for airplane route analy-
sis, aircraft and weather panels, as well as graphical user interfaces for simulation
purposes) and the communications manager(CM). All clients execute the same
protocols in communicating with CM, and can act as WUCs and WACs. Recall
that we capture the commonalities of components within interaction patterns by
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Initialize

Update

ConnectClient

WeatherUpdate

RestartClient

<<includes >>

<<includes>>

Check Weather
Updates

<<includes>>

<<in clu des>>

Fig. 2. CTAS Use Case Graph

means of roles. Each role describes the contribution of any component playing
that role to an interaction pattern. The underlying assumption is that compo-
nents can play multiple different roles, even at the same time.

For CTAS we have identified the following roles: Aware Client (Weather
Aware Client), Manager (Centralized Manager), and Button (a user interface
element that can be either enabled or disabled, but not both). These different
roles will be played by the actual CTAS implementation components.

The services defined in the next section identify the interactions between
these roles.

2.3 Services

Now we turn to the specification of the services CTAS supports for accomplishing
the initialization and update processes. The requirements for the CTAS system
are described in terms of how the CM and WACs react to messages received from
each other. The services are defined from the perspective of the CM or client,
respectively. These overlapping perspectives have to be combined to generate
the service for a complete process; we will return to this point, below.

The services defined in this section show how the roles played by the CTAS
components interact with each other. This helps us to isolate the design from
the actual implementation for the system. In a later phase of the development
process, we can map these services to the components we have defined for the
system implementation. This mapping will involve assigning the roles a compo-
nent plays in a service execution. For the CTAS system, for instance, we could
map the Manager role to the CM component, and the AwareClient role to the
PGUI and RAP client components mentioned in the requirements specification.

We use an extended version of Message Sequence Charts (MSC) to describe
the interaction patterns defining services; we will introduce this notation “by
example” using the CTAS services. The semantics of the notation is outlined in
Sec. 3.

ClientGetNewWeather. This service explains how an AwareClient will react when
it receives a CTAS GET NEW WTHR message from the Manager. The client
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will return back a CTAS WTHR RECEVIED message with a success or fail-
ure flag. The flag is determined by some internal operation for the AwareClient
indicated by the operation GetNewWeather. This service will be referred to in
the initialize and update CTAS services defined later on. Fig. 3(a) shows the
syntax we use for service specifications; it introduces a name for the service,
allows a verbal description, names all relevant roles, and provides an interaction
specification using an extended MSC.

MSCs have emerged in the context of SDL[29] as a means for specifying com-
munication protocols in telecommunication systems. A basic MSC consists of
a set of axes, each labeled with the name of a component. An axis represents
a certain segment of the behavior displayed by its corresponding component.
Arrows in basic MSCs denote communication. An arrow starts at the axis of the
sender; the axis at which the head of the arrow ends designates the recipient.
Intuitively, the order in which the arrows occur (from top to bottom) within
an MSC defines possible sequences of interactions among the depicted compo-
nents. In our extended MSC notation we use axes to indicate roles (instead of
components). Rectangular boxes labeled with alt express alternative interaction
patterns. The alternative chosen in Fig. 3(a) depends on the value of “Success”,
a local variable of Aware Client.

ClientUseWeather. This service is similar to the service ClientGetNewWeather
as it defines how an AwareClient should respond when it receives either a

service  client get new weather
description
    Responds to a Get Weather Message
roles
  AwareClient, Manager
interaction

msc client get new weather
Manager AwareClient

CTAS_GET_NEW_WTHR()

CTAS_WTHR_RECEIVED
(GET_SUCCEEDED)

CTAS_WTHR_RECEIVED (GET_FAILED)

alt  Success

Get New
Weather

(a)

service  client use weather
description
   Responds to a Use Weather Message
roles
  AwareClient, Manager
interaction
msc client use weather

Manager AwareClient

CTAS_USE_NEW_WTHR()

CTA S_U SE_O LD_WTHR()

C TA S_W TH R _RECEIV ED (U SE_SU C CEED ED )

CTAS_WTHR_RECEIVED(USE_FAILED)

alt

Use New Weather

Use Old Weather

alt  Success

(b)

Fig. 3. Service: Client Get/Use New Weather
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CTAS USE NEW WTHR or CTAS USE OLD WTHR message from the Man-
ager. The AwareClient will send a CTAS WTHR RECEIVED message with a
success or failure flag determined by a local operation. This service will also be
referred by other CTAS services. The service specification is shown in Fig. 3(b).

InitializeCM. This service specifies the interactions involved when the Manager
has to initialize a specific client. This service is defined from the Manager’s
perspective and so is named as InitializeCM. This service does not show the
complete behavior of the AwareClient during this initialization. The states of

service  initializeCM
description
    Manager initializes a weather client
roles
  AwareClient, Manager, Button
interaction

msc initializeCM
Manager AwareClient Button

Update_Client_Status (”pre-initializing”)

Disable()

Update_Client_Status (”initializing”)

CTAS_GET_NEW_WTHR()

Update_Client_Status (”post-
initializing”)

CTAS_USE_NEW_WTHR()

CM _CLOSE_CONNECTION()

done ENABLE()

Update_Client_Status  (”done”)

done

CM_GROUND_WINDSETTING()

PGUI_ALTIMETER_SETTING()

CM_CLOSE_CONNECTION()

CTAS_WTHR_RECEIVED(get_status)

CTAS_WTHR_RECEIVED(use_status)

use_status = WTHR_CLIENT_STATUS_FAILED_USE

get_status  = WTHR_CLIENT_STATUS_FAILED_GET

pre-initializing

alt get_status = WTHR_CLIENT_STATUS_SUCCEEDED_GET

initializing

post-initializing

pre-initializing

initializing

post-initializing

alt use_status = WTHR_CLIENT_STATUS_SUCCEEDED_USE

done

Fig. 4. Service - InitializeCM
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the Manager and AwareClient will change as the service execution proceeds.
In MSCs we denote state markers by means of labeled hexagons on role axes.
Depending on the success or failure flag value returned by the AwareClient,
the Manager reacts differently. The alternate options are shown in the service
specification with the help of the alt operator. One thing to note is that at the
end of this service, the Manager will return back to the done state. The service
specification is shown in Fig. 4.

CTAS Initialize. The CTAS Initialize service captures completely the Manager
and Client behavior when a Manager initializes an AwareClient. To achieve this
we need to define this service in terms of the services IntializeCM, ClientGet-
NewWeather, and ClientUseWeather.

Note that these services are overlapping; each one specifies a partial view on
a segment of the interactions between the different roles. To compose these ser-
vices we need to synchronize the common interactions of the respective services,
depending on what alternative route is chosen. To that end, we have intro-
duced an MSC operator join[5, 30], which synchronizes common messages in its
operand MSCs; all other interactions specified in the operands are treated as
being independent.

In InitializeCM, the Manager sends a CTAS GET NEW WTHR message
to the AwareClient. The AwareClient’s behavior when it receives this mes-
sage is captured in the ClientGetNewWeather service. We can see this for the
CTAS USE NEW WTHR message as well. The service specification is shown in
Fig. 5(a).

service  CTAS_Initialize
description
    Initializes a weather client
roles
  AwareClient, Manager, Button
interaction

msc CTAS_Initialize
Manager AwareClient Button

   join

initializeCM()

client get new weather(  )

client use weather( )

(a)

service  connect client
description
    Connects a client to the CM
roles
  AwareClient, Manager
interaction

msc connect client

AwareClient Manager

CTAS_Initialize( )

done

(b)

Fig. 5. Services: CTAS Initialize and ConnectClient
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ConnectClient. This service defines what interactions should occur when an
AwareClient attempts to connect to the Manager. In this state of affairs, the
CTAS Initialize service is triggered. In fact, as we will see in detail below, trig-
gered by a Connect message from a client, the ConnectClient service interrupts
any other ongoing service in which the Manager may be involved. The service
specification is shown in Fig. 5(b).

Restart Client. This service defines what interactions occur when an Aware-
Client sends a CTAS WTHR REINITIALIZED message to the Manager to reini-
tialize itself. The response to this message depends on whether the state of the
Manager is done or not (indicated as !done in the graphical notation). If the
Manager is in the done state, the interactions for the CTAS Initialize service are
executed. Otherwise, the manager sends a CM CLOSE CONNECTION mes-
sage to the AwareClient. Again, as we will see in detail below, triggered by a
CTAS WTHR REINITIALIZED message from a client, the RestartClient ser-
vice interrupts any other ongoing service in which the Manager may be involved.
The service specification is shown in Fig. 6(a).

service restart client
description
    Restarts a weather client
roles
  AwareClient, Manager
interaction
msc restart client

AwareClient Manager

donealt

CM_CLOSE_CONNECTION()

CTAS_Initialize(  )

! done

(a)

service  check for weather update
description
    Checks for weather updates
roles
  Manager, AwareClient
interaction

msc check for weather update
Manager

*
AwareClient

pre-updating

Check Weather
Updates

alt  new weather update available

pre-updating

done

Update_Client_Status (”pre-updating”)

(b)

Fig. 6. Services: RestartClient and CheckForWeatherUpdate

CheckForWeatherUpdate. This service is defined for checking whether there are
any new weather updates that have to be distributed to all AwareClients. The
Manager role is responsible for performing this check. If an update is avail-
able, the Manager will update its state and that of all the AwareClients to
pre-updating. We can see that this will trigger the service updateCM as the ini-
tial state for the Manager in the updateCM service is the Manager being in
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the pre-updating state. The definition for this service is shown in Fig. 6(b). The
corresponding MSC shows another extension we use for service specifications.
Role axes labeled with an asterisk (“*”) refer to all components playing that
role. This means that the Manager role actually broadcasts the message Up-
date Client Status to all AwareClients.

UpdateCM. Whenever the Manager role changes its state to pre-updating this
service is triggered; it shows the interactions involved during the update process
from the Manager perspective. The asterisk shown for AwareClient role again
indicates all instances of the role AwareClient. A message from the Manager
axis to the AwareClient axis indicates a message sent from the Manager to all
instances of the AwareClient role. Similarly, a message from the AwareClient role
axis to the Manager role axis indicates the responses from all the AwareClients.
This service shows how the Manager updates the weather information for all
the weather aware clients for the CTAS system. The definition for this service
is shown in Fig. 7. To discriminate between alternatives in this extended MSC
we use the syntax “ALL get status = v” to indicate that all “get status” flags
received by the Manager have the value “v”, and “EXISTS get status = v” to
indicate that at least one of the “get status” flags received has the value “v”.
We use these abbreviations here to avoid lengthy predicate logic specifications,
which would clutter the MSC.

CTAS Update. The UpdateCM service does not capture all the client behav-
iors during the update phase. The client’s behavior when it receives the follow-
ing messages: CTAS GET NEW WTHR, CTAS USE NEW WTHR, or CTAS
USE OLD WTHR is not captured in the UpdateCM service. It is, however, cap-
tured in the services ClientGetNewWeather and ClientUseWeather. Thus, these
behaviors need to be combined together in one service as we had done for the
CTAS Initialize service using the join operator. The definition for this service
is shown in Fig. 8(a).

CTAS System. The overall CTAS service can be expressed in terms of the ser-
vices we have already defined. This defines, in particular, the overall execution
cycle. For this purpose we use a High-Level MSC (HMSC). An HMSC is a graph
whose nodes are references to other (H)MSCs. The semantics of an HMSC is
obtained by following paths through the graph and composing the interaction
patterns referred to in the nodes along the way. We have extended the HMSC
notation to introduce a “preemption operator”[30]. This operator is graphically
denoted by a labeled, dotted arrow; the arrow is directed from the MSC refer-
ence specifying the interaction pattern to be preempted to the MSC reference
specifying what happens when the preemption occurs. The label on the dotted
arrow indicates the condition (a message that occurs, or a state that is reached)
that causes the preemption to happen. If the preemption condition is met any
time during the execution of the interactions of the source reference, that exe-
cution is immediately stopped, and followed by execution by the interactions of
the target reference.
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service  updateCM
description
    Manager updates weather aware clients
roles
  AwareClient, Manager, Button
interaction

msc updateCM
Manager

*
AwareClient Button

Update_Client_Status(”updating”)

CTAS_GET_NEW_WTHR()

Update_Client_Status(”post-updating”)

CTAS_USE_NEW_WTHR()

CTAS_WTHR_RECEIVED(get_status)

CTAS_WTHR_RECEIVED(use_status)

Update_Client_Status (”post-reverting”)

CTAS_USE_OLD_WTHR()

Enable()

Update_Client_Status (”done”)

CM_GROUND_WINDSETTING()

PGUI_ALTIMETER_SETTING()

CM_CLOSE_CONNECTION()

done

EXISTS use_status = WTHR_CLIENT_STATUS_FAILED_USE

alt ALL use_status = WTHR_CLIENT_STATUS_SUCCEEDED_USE

EXISTS get_status = WTHR_CLIENT_STATUS_FAILED_GET

pre-updating

alt  ALL get_status= WTHR_CLIENT_STATUS_SUCCEEDED_GET

post-updating

updating

post-updating

updating

post-reverting

post-reverting

CTAS_WTHR_RECEIVED(use_status)

done

Fig. 7. Service - UpdateCM

For our example, we have defined that the service CheckForWeatherUpdate
will be executed repeatedly until a weather update is available. This service
will be preempted if a client attempts to send a Connect or a CTAS WTHR
REINITALIZED message to the Manager. Thus, after the system completes the
execution for the Connect Client or Restart Client service, the system will again
execute the CheckForWeatherUpdate service. The definition for this service is
shown in Fig. 8(b).
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service  CTAS_Update
description
    Updates all weather clients
roles
  AwareClient, Manager, Button
interaction

msc CTAS_Update
Manager

*
AwareClient Button

join

updateCM( )

client get new weather(  )

client use weather(  )

(a) (b)

Fig. 8. Services: CTASUpdate and CTASSystem

service check weather update progress
description
    Monitors the progress of weather update
roles
  AwareClient, Manager
interaction
msc check weather update progress

*

AwareClient

trigger

updateCM(  )

Manager

Update_Client_Status (”pre-updating”)

(a) (b)

Fig. 9. Services: CheckWeatherUpdateProgress and CTASSystemWithConstraint

CheckWeatherUpdateProgress. So far, we have not placed any restrictions on
the progress of the system as specified; in particular, the system could never
actually transmit a weather update, if at least one of the clients were to pre-
empt the CheckForWeatherUpdate service just before the system transits into the
CTAS Update service. In our extended MSC notation we can specify progress
conditions using the triggers operator[30]. For two MSCs A and B we write
A triggers B to denote that whenever an interaction pattern according to A
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occurs in the system under consideration, then the interaction pattern specified
by B is inevitable.

One of the main conditions for the CTAS system to continue executing suc-
cessfully is for the Manager role to return to the done state after executing a
specific process. In this service we have defined a trigger for the updateCM() ser-
vice. If the system ever has an Update Client Status(”pre-updating”) message,
then the updateCM() service must execute eventually. The definition for this
service is shown in Fig. 9(a).

CTASSystemWithConstraint. Now we can apply the constraint defined in the
service CheckWeatherUpdateProgress to the system using this service. This can
be done by using the join operator. In this case the two services CTAS System
and Check Weather Update Progress have been joined. Thus, the constraint de-
fined in service CheckWeatherUpdateProgress will cross-cut the whole execution
of the CTAS System. The definition for this service is shown in Fig. 9(b).

This concludes our informal presentation of the notation and process we
advocate for service specifications. Now we turn to the formalization of the
underlying concepts.

3 Service Specification Using MSCs

In this section we introduce the formal model for the semantics definition of
services and extended MSCs. This model serves as the basis for defining the
synthesis of component implementations from MSCs in Sec. 4.

3.1 System Model

We prepare our precise semantics definition for services and MSCs by first in-
troducing the structural and behavioral model (the system model) on which we
base our work. We pay special attention to providing a system model that en-
ables interaction- and state-oriented behavior specifications in parallel. This is a
prerequisite for a seamless integration of these two complementary architectural
aspects; this integration is needed, for instance, to provide a semantic founda-
tion for the mapping from MSCs to individual component behavior as presented
in Sec. 4. Along the way we introduce the notation and concepts we need to
describe the model.

System Structure and Behavior. Structurally, a system consists of a set P of
components, objects, or processes1, and a set C of named channels. Each chan-
nel ch ∈ C is directed from its source to its destination component; we assume
that channel names are unique. Channels connect components that communi-
cate with one another; they also connect components with the environment.
Communication proceeds by message exchange over these channels.

1 In the remainder of this document, we use the terms components, objects, and
processes interchangeably.
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With every p ∈ P we associate a unique set of states, i.e. a component state
space, Sp . We define the state space of the system as S

def= Πp∈P Sp . For
simplicity, we represent messages by the set M of message identifiers.

Now we turn to the dynamic aspects of the system model. We assume that the
system components communicate among each other and with the environment
by exchanging messages over channels. We assume further that a discrete global
clock drives the system. We model this clock by the set of natural numbers.
Intuitively, at time t ∈ every component determines its output based on the
messages it has received until time t− 1, and on its current state. It then writes
the output to the corresponding output channels and changes state. The delay
of at least one time unit models the processing time between an input and the
output it triggers; more precisely, the delay establishes a strict causality between
an output and its triggering input (cf. [2, 1]).

Formally, with every channel c ∈ C we associate the histories obtained from
collecting all messages sent along c in the order of their occurrence. Our ba-
sic assumption here is that communication happens asynchronously: the sender
of a message does not have to wait for the latter’s receipt by the destination
component.

This allows us to model channel histories by means of streams[2]. A stream
is a finite or infinite sequence of messages. By X∗ and X∞ we denote the set of
finite and infinite sequences over set X, respectively. Xω def= X∗ ∪X∞ denotes
the set of streams over set X. We identify X∗ and X∞ with

⋃
i∈ ([0, i] → X)

and → X, respectively, and use function application to write x.n for the n-th
element of stream x (for x ∈ Xω and n ∈ ).

We define C̃
def= C → M ∗ as a channel valuation that assigns a sequence of

messages to each channel; we obtain the timed stream tuple C̃∞ as an infinite
valuation of all channels. This models that at each point in time a component
can send multiple messages on a single channel.

With timed streams over message sequences we have a model for the com-
munication among components over time. Similarly we can define a succession
of system states over time as an element of set S∞.

With these preliminaries in place, we can now define the semantics of a sys-
tem with channel set C , state space S, and message set M as an element of
P((C̃ × S)∞). The existence of more than one element in the semantics of
a system indicates nondeterminism. For notational convenience we denote for
ϕ ∈ (C̃ × S)∞ by π1(ϕ) and π2(ϕ) the projection of ϕ onto the corresponding
infinite channel and state valuations, respectively; thus, we have π1(ϕ) ∈ C̃∞

and π2(ϕ) ∈ S∞.

3.2 Services

Based on our observation that the key to understanding a service is to understand
the interplay of the components involved in delivering the service, we define our
service notion to be a projection of the overall system behavior on a certain
period of time. More precisely, we define a set
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Q ⊆ (C̃ × S)∞ × ∞

to be a service (specification) with respect to the system model introduced in
Sec. 3.1.

Given a service Q, every element (ϕ, t) ∈ Q describes one nondeterministic
alternative of the system’s behavior until time t. This service notion captures
in an abstract way what happens in the system under consideration until a
certain time point; it refers to two major aspects of system behavior: component
interaction and state change. Components are referred to only indirectly as the
sources and destinations of channels, and as the locations for program state in
this model.

A service specification Q defines only what the system must satisfy at least.
Because of its “looseness” this service notion readily supports the partiality that
we have identified as critical for service specifications.

3.3 From MSCs to Services

In earlier work [1, 5, 30] we have introduced a semantic mapping from an ex-
tended MSC notation into the semantic domain (C̃ × S)∞ × ∞. For reasons
of brevity, we do not repeat the entire mapping here, but give the basic idea
behind it. Intuitively, we associate with a given MSC a set of channel and state
valuations, i.e. a set of system behaviors according to the system model we have
introduced in Sec. 3.1. Put another way, we interpret an MSC as a constraint at
the possible behaviors of the system under consideration. More precisely, with
every MSC α and every u ∈ ∞ we associate a set [[α]]u ∈ P((C̃ × S)∞ × ∞);
any element of [[α]]u is a pair of the form (ϕ, t) ∈ (C̃×S)∞× ∞. The first con-
stituent, ϕ, of such a pair describes an infinite system behavior. u and the pair’s
second constituent, t, describe the time interval within which α constrains the
system’s behavior. Intuitively, u corresponds to the “starting time” of the behav-
ior represented by the MSC; t indicates the time point when this behavior has
finished. Hence, outside the time interval specified by u and t the MSC α makes
no statement whatsoever about the interactions and state changes happening in
the system.

This mapping supports all the operators on MSCs introduced above, includ-
ing join, preemption, trigger composition, and HMSCs. We refer the interested
reader to [5, 30] for the details.

Roles can be handled in multiple ways in this framework. The most straight-
forward approach is to identify roles and components; this way we obtain a
system model where each role defines exactly one implementation “role compo-
nent”. That role component would represent all instances of the role. If we start
from a given target component architecture, then we may be interested in map-
ping multiple roles to one of the components, say T . Then, we can treat roles as
subcomponents of T . Cases where MSCs contain “multi-axes” (axes labeled with
an asterisk), can be elegantly handled by preprocessing the underlying system
architecture, as we will discuss in detail in Sec. 4.
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3.4 Mapping MSCs to Service Specifications

The only remaining task is to associate MSCs with service specifications. Given
the preparations in the preceding subsections this is a simple task. Given an
MSC α we immediately obtain a service specification Qα as follows:

Qα
def= [[α]]0

This definition facilitates the use of MSCs as a graphical description tech-
nique for service specifications. Clearly, as defined here, MSCs help capture the
interaction part of a service specification.

4 From Services to Components

Once we have obtained a sufficiently detailed service specification we are in-
terested in deriving a set of components that exhibit the interaction behavior
captured by means of the defining MSCs. Here, we establish the formal relation-
ship between components, their interaction behavior, and MSC specifications.
Moreover, we describe an algorithm for obtaining state machines syntactically
from a given MSC specification.

4.1 Preliminaries

To state the synthesis problem precisely, we define first what the (black-box)
behavior of individual components is. To that end, for a component F we intro-
duce the sets IF ⊆ C of input channels, and the set OF ⊆ C of output channels.
We define

−→
I F

def= (IF →M∗)∞ and
−→
OF

def= (OF →M∗)∞ as valuations (his-
tories) of these channel subsets. A component specification is a relation between
the input and output histories of the component under consideration. More pre-
cisely we define a relation F :

−→
I F → (

−→
OF → ) as the component specification

for F . For a set J of indices, and a family {Fj : j ∈ J} of component specifica-
tions we require that for i, j ∈ J we have o ∈ OFi

∩ OFj
⇒ i = j, i.e. output

channels of components are unique. We call a component specification F causal,
if at any time point t ∈ the output of F depends at most on the inputs F has
received before t.

Our next step is to define the notion of component composition. We base our
composition operator on logical conjunction. For an index set J and a family of
component specifications {Fj : j ∈ J} we define the semantics of their compo-
sition

⊗
j∈J Fj by requiring that a given behavior fulfills the conjunction of all

component specifications:

[[
⊗
j∈J

Fj ]]
def= {ψ ∈ C̃∞ :

∧
j∈J

Fj .(ψ|IFj
).(ψ|OFj

)}

In this definition we denote by ψ|D the projection of ψ ⊆ C̃∞ on the channels
in D ⊆ C.
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Based on these preliminaries we can define the notion of realizability and
formulate the synthesis problem for MSCs. Let a set of channel valuations Spec ⊆
C̃∞ be given. We call Spec realizable, if there exists a family {Fj : j ∈ J} of
causal component specifications, such that

[[
⊗
j∈J

Fj ]] ⊆ Spec

holds. Realizability of a specification implies that we can find a set of components
implementing this specification.

For a given (H)MSC α, the task of finding a family {Fj : j ∈ J} of causal
component specifications, such that2

[[
⊗
j∈J

Fj ]] ⊆ {ψ ∈ C̃∞ : 〈∃(ϕ,∞) ∈ [[α]]0) :: ψ = π1.ϕ〉}

holds, is the synthesis problem for MSC α.

4.2 Algorithm for Automaton Synthesis

In [1, 5] we have shown that the MSC dialect introduced above yields realizable
specifications; therefore, component synthesis is possible for the MSCs we con-
sider. In the interest of space we give only a brief account of the key steps for
synthesizing component prototypes from the MSCs we have elicited from the
CTAS requirements document.

Basic Algorithm. To avoid overly general solutions, we take into account state
information provided by the MSCs’ author using guards. We assume given a
set of MSCs that describe all the interaction sequences among a set of compo-
nents, i.e., we make a closed world assumption with respect to the interaction
sequences that occur in the system under development. We translate each guard
that appears in any of the MSCs into a corresponding automaton state. We
assume further that we try to obtain an automaton for exactly one of the com-
ponents, say p ∈ P , occurring in the MSCs. The second input we expect is
the name of the initial state for p’s automaton. We derive an automaton for
an individual component specification from a given set of MSCs by successively
applying four transformation steps: 1. projection of the given MSCs onto the
component of interest, 2. normalization of the MSCs, i.e. adding missing start
and end labels (state markers), and splitting MSCs with more than two labels
at an intermediate label, 3. transformation into an automaton by identifying the
MSCs as transition paths, and by adding intermediate states accordingly, and
4. optimization of the resulting automata. This synthesis algorithm [10] works
fully automatically for causal MSCs [9], and can handle choice, repetition, and

2 For reasons of simplicity and without loss of generality we assume that α describes
infinite behavior.
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concurrency/interleaving [5]. Because the algorithm is based on syntactic ma-
nipulation of the given MSCs it is oblivious to the underlying MSC semantics –
as long as the semantics of the target component model matches the one used
for the MSCs serving as input to the algorithm.
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Fig. 10. Modified CTAS SSD including a broadcasting and arbiter component

Extensions for Handling Roles. Our basic synthesis algorithm deals only with
point-to-point message exchange. To address role axes labeled with an asterisk
we observe that an incoming message to such an axis denotes broadcasting. A
message emanating from such an axis (a “multi-message”) denotes the “collec-
tion” of all the responses by all instances of the role at the recipient of this mes-
sage, i.e. the inverse of broadcasting. To adapt the algorithm to deal with such
situations we introduce two separate component types: a “broadcaster”, and an
“arbiter”, for each occurrence of a multi-axis. The “broadcaster” is responsible
for relaying all messages it receives to all instances of the role it corresponds to.
The arbiter is responsible for collecting messages from all instances of the role it
corresponds to, and for forwarding a “cumulative” answer to the receiver of the
multi-message. We show an example of this approach in Fig. 10; it depicts an
architecture containing the following components: the communications manager
(CM), the aware clients: Aircraft Panel (AP), Weather Panel (WP), Planview
GUI (PGUI) and Route Analysis (RA), as well as the Broadcaster and Arbiter
components. This allows us to also update the original MSCs accordingly; the
newly added component Broadcaster receives broadcasting messages from CM,
and forwards them to all other components. Similarly, to handle multi-messages,
we introduce a component Arbiter, which receives the yes and no replies from
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all components and only relays the aggregate result (all yes or some no) to CM.
As a consequence in the state automaton for CM we only need one transition for
sending a broadcasting message, and for receiving a multi-message, respectively.
In particular, we can directly reuse the basic synthesis algorithm without the
problem of incurring cluttered automata. A second advantage of this approach
is that it directly supports hierarchical component refinement, and thus scales
nicely [11]. In a hierarchical component model the explicit broadcaster compo-
nent (and similarly an arbiter) can also be introduced as a sub-component of
CM, thus hiding it from CM’s environment.

The components AP, WP, PGUI, and RA are all instances of the AwareClient
role and implement the corresponding automata. Fig. 10 shows one possible
mapping of the services to components; another one emerges if we map the roles
of Broadcaster, Arbiter, and Manager together onto the CM component.

5 Conclusions, Related Work and Outlook

Service-oriented software development is a promising alternative to traditional
object- and component-oriented development approaches. We understand ser-
vices as partial interaction patterns within the system under consideration. Com-
ponents, on the other hand, emerge from the composition of services as complete
behavior specifications. Exploiting this duality between partial and complete be-
havior specifications is a challenge for existing development processes; by intro-
ducing services as first-class entities of both design and implementation increases
the traceability of the central interaction patterns of complex, distributed and
reactive systems.

We have shown that, using an extended version of MSCs, we can specify
the CTAS case study in a service-oriented manner. Besides a demonstration of
the practical utility of our approach we also obtain a comprehensive collabora-
tion specification for CTAS beyond the original, textual and component-centric
requirements documents.

The notion of service is used with different meanings across application do-
mains and abstraction levels [33]. In the realm of requirements capture and mod-
eling, where our work is positioned, the idea of using services as “orchestrators”
for the interactions of multiple components and objects is gaining popularity
[32]. We support this view by defining services as interaction patterns among
roles, and – as a separate step – mapping services to target architectures. This
distinguishes our approach also from others [34, 35, 36, 37] where components
and connectors, not services, are the center of concern.

Often the notion of service-oriented architectures is identified with technical
infrastructures for implementing services, including the popular web-services
infrastructure [31]. Our work, in contrast, supports finding the services that can
later be exposed either as web-services, or implemented as “internal” services of
the system under consideration.

The role concept introduced in [19] and the activities of [18] are related to
our concepts of roles and services. Our approach, however, is more general and
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abstract than either of these approaches, as our role concept decouples services
from target implementation architectures using roles as abstractions of compo-
nents within interaction patterns. Baresi et al. discuss modeling and validation
of service-oriented architectures [17]; here, however, interaction scenarios are
treated as a means for validation only, not as the defining element of services.
As we have argued above, we believe that using interaction patterns as the
defining element for services does better justice to their cross-cutting nature in
complex systems.

Clearly, there is ample potential for further extensions and elaborations of the
service concept introduced here. Note, for instance, that the sets of components
and roles need not be fixed over time (although they are in the CTAS example);
addressing this issue will result in support for dynamic and mobile service con-
figurations, which have many practical applications. A thorough investigation of
the benefits of services and service-oriented software architectures, as compared
to object- and component-oriented approaches is also a promising area of future
research.
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9. B. Finkbeiner and I. Krüger: Using Message Sequence Charts for Component-
Based Formal Verification. In Specification and Verification of Component Based
Systems (SAVCBS). Workshop at OOPSLA (2001)
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